Como fazer conats com um numero multiplicando uma raiz quadrada

Uma das mais usuais raízes na radiciação é a raiz quadrada. É muito comum encontrá-la em exercícios, dos mais diversos conteúdos da matemática.

Podemos definir que a raiz quadrada de um número “n” é um número não negativo. Este número, por sua vez, quando multiplicado por si próprio, é igual a “n”.

 \(\sqrt[2]{n}=a\) , com “n” e “a” \(\geq n=a^{2}\)

Na raiz acima, temos o radical \(\sqrt{ }\), o índice do radical (que no caso da raiz quadrada será sempre igual a 2) e o radicando (número “n”).

Quando nos deparamos com uma raiz quadrada, é comum observarmos que o índice 2 não é escrito na raiz. Isso se justifica porque ficou definido na matemática que quando se trata de uma raiz quadrada, não há a necessidade de indicar o índice 2.

    Vamos ver alguns exemplos:

  • \(\sqrt{4}=2\)
  • \(\sqrt{9}=3\)
  • \(\sqrt{16}=4\)
  • \(\sqrt{25}=5\)
  • \(\sqrt{36}=6\)
  • \(\sqrt{49}=7\)
  • \(\sqrt{64}=8\)
  • \(\sqrt{81}=9\)
  • \(\sqrt{100}=10\)

É importante ressaltar que, mesmo que os números negativos -2 e -3 satisfaçam as expressões \((-2)^{2}=4\)  e  \((-3)^{2}=9\), eles não devem ser admitidos como respostas válidas, a fim de que a concepção geométrica do símbolo radical não seja contrariada.

Neste sentido, a expressão \(\sqrt{25}=\pm 5\), por exemplo, está errada! O correto seria \(\sqrt{25}=5\). Note que esta situação é diferente de \(x^{2}=25\), pois nesse caso, temos uma equação quadrática, onde o “x” pode, sim, assumir tanto o valor de 5, quanto o valor de -5.

A raiz quadrada pode ser manipulada de algumas formas que podem nos ajudar a resolver determinados exercícios, vamos ver como isso funciona!

Atenção! As propriedades a seguir podem ser vistas com maiores detalhes no tópico de radiciação! 

A raiz quadrada pode ser modificada das seguintes maneiras quando estamos tratando com divisão e multiplicação:

\(\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}} \qquad \sqrt{ab}=\sqrt{a}\cdot \sqrt{b}\)

Contudo, quando estamos operando com soma e subtração, note que as expressões a seguir são diferentes:

\(\sqrt{a+b}\neq \sqrt{a}+\sqrt{b} \qquad \sqrt{a-b}\neq \sqrt{a}-\sqrt{b}\)

Assim, é preciso tomar cuidado com as raízes, a fim de que não seja feito algum cálculo errado envolvendo elas.

Caso uma raiz quadrada esteja dentro de outra raiz quadrada, basta multiplicarmos o índice 2 das duas raízes para obtermos somente uma raiz:

\(\sqrt[2]{\sqrt[2]{a}}=\sqrt[2\cdot 2]{a}=\sqrt[4]{a}\)

Muitos exercícios demandam que o aluno saiba como transformar um valor em radiciação para potenciação. Vamos ver como se dá esse processo (não se preocupe, é bem fácil!).

\(\sqrt{x^{p}}=x^{\frac{p}{2}}\)

Tranquilo, né? Essa é a relação entre as duas operações matemáticas. Para ficar mais fácil de lembrar, pense que o número que está “fora” na raiz fica “dentro” na potência (neste caso, o 2) e o número que está “dentro” na raiz fica “fora” na potência (neste caso, o “p”).

Em muitas situações, você vai se deparar com uma raiz cujo resultado não é encontrado mentalmente e de forma fácil (como é o caso das raízes \(\sqrt{4}, \sqrt{9}, \sqrt{25}\) por exemplo). Dessa forma, é interessante saber calcular o valor da raiz quadrada a fim de que você consiga resolver completamente os exercícios. 

Assim, o passo a passo do cálculo da raiz é:

1º passo: Dividir seu radicando somente por números primos até obter o número 1. Como exemplo, vamos usar \(\sqrt{400}\).

Como fazer conats com um numero multiplicando uma raiz quadrada

2º passo: Multiplicar de dois em dois os números de mesmo valor:

Obs. 1: Caso fosse raiz cúbica, multiplicar de três em três e assim por diante.

Como fazer conats com um numero multiplicando uma raiz quadrada

Obs. 2: Caso algum número primo “n” estivesse sozinho, ou seja, não fosse possível multiplicar ele com outro número de mesmo valor, adotar ele como raiz de “n”. Exemplo: \(\sqrt{10}\).

Como fazer conats com um numero multiplicando uma raiz quadrada

Muitos alunos se perguntam o porquê de aprender sobre radiciação e raízes quadradas, enquanto eles não sabem o quão importante é este instrumento.

As raízes são utilizadas nos mais diversos cálculos matemáticos, desde o Teorema de Pitágoras, passando pelas equações de segundo grau (com Bhaskara) até em problemas de engenharia, onde diversas fórmulas envolvem raízes.

Nesse sentido, prova-se a relevância desta operação. É importante lembrar que todo estudo tem alguma função e, com as raízes, não é diferente!

Como fazer conats com um numero multiplicando uma raiz quadrada

Exercício de fixação

UEMA

O valor da raiz quadrada \(\sqrt[2]{0,444...}\) é:

A radiciação é uma operação matemática que possui várias aplicações, dominá-la é importante para resolver-se problemas envolvendo potenciação, já que essas operações são inversas.

Calcular a raiz enésima de um número x é encontrar qual número que, elevado a n, é igual a x. A radiciação possui propriedades importantes que servem para facilitar as contas e realizar simplificações de radicais. Para realizar operações com radiciação, é importante o domínio de cada uma das suas propriedades e compreender o significado de cada um dos seus termos.

Leia também: Como fazer a racionalização com raízes enésimas?

Como fazer conats com um numero multiplicando uma raiz quadrada
Radiciação é uma operação matemática sendo a inversa da potenciação.

Representação de uma radiciação

Para representar a raiz de um número, utilizamos um símbolo conhecido como radical (√ ), a raiz de um número qualquer é representada pela seguinte operação:

√ → radical

a→ radicando

b→ raiz

n→ índice

Observação: quando n = 2, chamamos de raiz quadrada, e, nesse caso, escrever o número 2 no índice torna-se opcional.

Para calcular-se a raiz de um número, é fundamental entender que a radiciação é a operação inversa da potenciação, então dominar potenciação é essencial para calcular-se a raiz de um número.

Ao escrever a raiz enésima de a e afirmar que ela é igual a b, ou seja:

estamos dizendo que, quando calculamos bn, encontramos o número representado pela letra a. Portanto é essencial entender que quando se fala que um número é raiz enésima de um outro número, isso significa que a raiz elevada ao índice é igual ao radicando.

Exemplos:

Veja também: Propriedades das potências – quais são e como as utilizar?

Propriedades da radiciação

As propriedades da radiciação são meios para facilitar-se o cálculo de problemas que envolvem tal operação. Existe um total de sete propriedades, e dominar cada uma delas é de grande importância para resolução de problemas sobre o tema.

A raiz enésima de um número a elevado a n é igual ao próprio número a, ou seja, calculando a raiz de um número cujo o índice da raiz é igual ao expoente do radicando, encontraremos como resposta o próprio radicando.

A raiz enésima do produto é igual ao produto de duas raízes enésimas. Se o radicando for o produto entre dois números, podemos separar como a multiplicação da raízes enésimas de cada uma de suas parcelas.

A raiz enésima de uma divisão é igual ao quociente entre duas raízes enésimas. Se o radicando for uma divisão entre dois números, podemos separar como a raiz enésima do dividendo, dividido pela raiz enésima do divisor.

Podemos multiplicar ou dividir (simplificar) o índice da raiz, desde que a mesma operação seja feita com o expoente do radicando.

Quando encontramos a raiz de uma raiz, podemos multiplicar seus índices e representar essa operação com um único radical.

A potência de uma raiz enésima pode ser reescrita como a raiz enésima do radicando elevada a essa potência.

A raiz enésima pode ser transformada em uma potência com expoente racional. O índice da raiz corresponde ao denominador, e o expoente da base corresponde ao numerador:

Acesse também: Como aplicar as propriedades da radiciação?

Simplificação de radicais

Quando estamos trabalhando com um valor que não possui uma raiz exata, podemos fazer a simplificação desse radical. Para isso, é necessário algum método para decompor o número em fatores primos.

Exemplo:

Escreva na forma simplificada a raiz quadrada de 360.

Vamos realizar a fatoração de 360 utilizando o método das divisões sucessivas.

360|2→ 2 é o menor número primo que divide 360; 180|2→ 2 é o menor número primo que divide 180;   90|2 → 2 é o menor número primo que divide 90;

  45|3 → 3 é o menor número primo que divide 45;


  15|3 → 3 é o menor número primo que divide 15;
    5|5 → 5 é o menor número primo que divide 5.
    1|

Sendo assim, temos que 360= 2 · 2 · 2 · 3 · 3 · 5.

Como o nosso objetivo é simplificar uma raiz quadrada, vamos agrupar esses fatores de 2 em 2, logo, podemos reescrever 360 como:

360= 2² · 2 · 3² · 5

Assim, podemos reescrever a raiz de 360, utilizaremos a primeira propriedade para simplificar a raiz quadrada, o que significa que os termos que estão elevados ao quadrado sairão do radical, e os que não estão permanecem dentro do radical:

Operações com radicais

A adição e a subtração de dois radicais são operações que, muitas vezes, são feitas de forma errada. Acontece que não podemos somar ou subtrair o radical de uma raiz com o radical de outra, ainda que o índice seja o mesmo:

√2 + √3 ≠ √5

Na busca por não cometer esse erro, o que deve ser feito é deixar representada a adição como no primeiro membro da equação. Vale lembrar que se trata de raízes. Realizar a soma ou a subtração de duas raízes e representá-las de forma mais simples só é possível se estivermos falando da mesma raiz, por exemplo:

√2 + √2 = 2√2

Nesse caso sempre somaremos os coeficientes, ou seja, o número que acompanha a raiz, lembrando que não se pode somar o radicando de cada uma delas.

Quando necessário, podemos simplificar as raízes para que elas tenham os mesmos radicandos, e aí sim realizar a operação:

√72 - √50

Sabemos que

72 = 2 · 2 · 2 · 3 · 3

72 = 2² · 2 · 3²

e também podemos reescrever o 40 como:

50 = 2 · 5 · 5

50 = 2 · 5²

Então teremos:

Para realizar a multiplicação, é necessário que o índice seja o mesmo para todas as raízes. Quando isso ocorre, acabamos recorrendo à 2ª e à 3ª propriedade. Somente nesses casos é possível realizar-se a operação.

Exemplo:

Exercícios resolvidos

Questão 1 - Sendo “a” e “b” números reais positivos e “n” e “m” números inteiros maiores do que 1, assinale a alternativa incorreta:

Resolução

Alternativa B.

Analisando-se as alternativas, a única que não corresponde a uma das propriedades da radiciação é a B, não podemos separar a soma da forma que foi feito.

a) → 2ª propriedade

b) → Não é uma propriedade da radiciação.

c) → 5ª propriedade

d) → 1ª propriedade

Questão 2 -  (IFG 2010) O resultado do cálculo da expressão é:

Resolução

Alternativa C.

Note que todas as frações possuem mesmo índice, o que permite que seja feita a multiplicação, então, primeiro, faremos a propriedade distributiva e, posteriormente, faremos as simplificações necessárias. Para facilitar, escreveremos 25 como 5².