Which response variable (on the y axis) did not increase with plant species richness?

  • Aggemyr E, Cousins SAO (2012) Landscape structure and land use history influence changes in island plant composition after 100 years. J Biogeogr 39:1645–1656

    Article  Google Scholar 

  • Aggemyr E, Jädergård L, Auffret AG, Cousins SAO (2018) Data from: species richness and composition differ in response to landscape and biogeography. Figshare Data Repos. https://doi.org/10.17045/sthlmuni.5607112

    Article  Google Scholar 

  • Aho K, Derryberry D, Peterson T (2014) Model selection for ecologists: the worldviews of AIC and BIC. Ecology 95:631–636

    Article  Google Scholar 

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control AC 19:716–723

    Article  Google Scholar 

  • Arrhenius O (1921) Species and area. J Ecol 9:95–99

    Article  Google Scholar 

  • Auffret AG, Aggemyr E, Plue J, Cousins SAO (2017a) Spatial scale and specialization affect how biogeography and functional traits predict long-term patterns of community turnover. Funct Ecol 31:436–443

    Article  Google Scholar 

  • Auffret AG, Cousins SAO (2018) Land uplift creates important meadow habitat and a potential original niche for grassland species. Proc R Soc B 285:20172349

    Article  Google Scholar 

  • Auffret AG, Rico Y, Bullock JM, Hooftman DAP, Pakeman RJ, Soons MB, Suárez-Esteban A, Traveset Am Wagner HH, Cousins SAO (2017b) Plant functional connectivity—integrating landscape structure and effective dispersal. J Ecol 105:1648–1656

    Article  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2014) Fitting linear mixed-effects models using lme4. J Stat Softw. https://doi.org/10.18637/jss.v067.i01

    Article  Google Scholar 

  • Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055

    Article  Google Scholar 

  • Brown JH, Kodric-Brown A (1977) Turnover rates in insular biogeography: effect of immigration on extinction. Ecology 58:445–449

    Article  Google Scholar 

  • Bullock JM, Mallada González L, Tamme R, Götzenberger L, White SM, Pärtel M, Hooftman DAP (2017) A synthesis of empirical plant dispersal kernels. J Ecol 105:6–19

    Article  Google Scholar 

  • Cain ML, Milligan BG, Strand AE (2000) Long-distance seed dispersal in plant populations. Am J Bot 87:1217–1227

    CAS  Article  Google Scholar 

  • Chatterjee S, Hadi AS (2012) Regression analysis by example, 5th edn. Wiley, Hoboken

    Google Scholar 

  • Chiarucci A, Bacaro G, Scheiner SM (2011) Old and new challenges in using species diversity for assessing biodiversity. Philos Trans 366:2426–2437

    Article  Google Scholar 

  • Collinge SK (1996) Ecological consequences of habitat fragmentation: implications for landscape architecture and planning. Landsc Urban Plan 36:59–77

    Article  Google Scholar 

  • Copeland SM, Harrison SP, Latimer AM, Damschen EI, Eskelinen AM, Fernandez-Going B, Spasojevic MJ, Anacker BL, Thorne JH (2016) Ecological effects of extreme drought on Californian herbaceous plant communities. Ecol Monogr 86:295–311

    Article  Google Scholar 

  • Cousins SAO (2009) Landscape history and soil properties affect grassland decline and plant species richness in rural landscapes. Biol Conserv 142:2752–2758

    Article  Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection, or, the preservation of favoured races in the struggle for life. J. Murray, London

    Google Scholar 

  • De Sanctis M, Alfò M, Attorre F, Francesconi F, Bruno F (2010) Effects of habitat configuration and quality on species richness and distribution in fragmented forest patches near Rome. J Veg Sci 21:55–65

    Article  Google Scholar 

  • Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, García Marquéz JR, Gruber B, Lafourcade B, Leitão PJ, Münkemüller T, McClean C, Osborne PE, Reineking B, Schröder B, Skidmore AK, Zurell D, Lautenbach S (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:27–46

    Article  Google Scholar 

  • Drakare S, Lennon JJ, Hillebrand H (2006) The imprint of the geographical, evolutionary and ecological context on species–area relationships. Ecol Lett 9:215–227

    Article  Google Scholar 

  • Fahrig L (2013) Rethinking patch size and isolation effects: the habitat amount hypothesis. J Biogeogr 40:1649–1663

    Article  Google Scholar 

  • Fahrig L (2017) Ecological responses to habitat fragmentation per Se. Annu Rev Ecol Evol Syst 48:1–23

    Article  Google Scholar 

  • Fischer SR (2013) Islands: from Atlantis to Zanzibar. Reaktion Books, London

    Google Scholar 

  • Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574

    CAS  Article  Google Scholar 

  • Forster JR (1778) Observations made during a voyage round the world: on physical geography, natural history, and ethnic philosophy, 1st edn. G. Robinson, in Pater-noster-Row, London

    Google Scholar 

  • Gotelli NJ, Chao A (2013) Measuring and estimating species richness, species diversity, and biotic similarity from sampling data. Encyclopedia of biodiversity, 2nd edn. Academic Press, Waltham, pp 195–211

    Chapter  Google Scholar 

  • Haddad NM, Gonzalez A, Brudvig LA, Burt MA, Levey DJ, Damschen EI (2017) Experimental evidence does not support the habitat amount hypothesis. Ecography 40:48–55

    Article  Google Scholar 

  • Hanski I (1999) Metapopulation ecology, 1st edn. Oxford University Press, Oxford

    Google Scholar 

  • Helm A, Hanski I, Pärtel M (2005) Slow response of plant species richness to habitat loss and fragmentation. Ecol Lett 9:72–77

    Google Scholar 

  • Hernandez-Stefanoni J (2005) Relationships between landscape patterns and species richness of trees, shrubs and vines in a tropical forest. Plant Ecol 179:53–65

    Article  Google Scholar 

  • Jenkins DG, Ricklefs RE (2011) Introduction: biogeography and ecology: two views of one world. Philos Trans 366:2331–2335

    Article  Google Scholar 

  • Kadmon R, Pulliam HR (1993) Island biogeography: effect of geographical isolation on species composition. Ecology 74:978–981

    Google Scholar 

  • Kimberley A, Blackburn GA, Whyatt JD, Smart SM (2014) Traits of plant communities in fragmented forests: the relative influence of habitat spatial configuration and local abiotic conditions. J Ecol 102:632–640

    Article  Google Scholar 

  • Klimek S, Richtergen, Kemmermann A, Hofmann M, Isselstein J (2007) Plant species richness and composition in managed grasslands: the relative importance of field management and environmental factors. Biol Conserv 134:559–570

    Article  Google Scholar 

  • Kohn DD, Walsh DM (1994) Plant species richness-the effect of island size and habitat diversity. J Ecol 82:367–377

    Article  Google Scholar 

  • Kougioumoutzis K, Tiniakou A (2015) Ecological factors driving plant species diversity in the South Aegean Volcanic Arc and other central Aegean islands. Plant Ecol Divers 8:173–186

    Article  Google Scholar 

  • Kuemmerle T, Levers C, Erb K, Estel S, Jepsen MR, Müller D, Plutzar C, Stürck J, Verkerk PJ, Verburg PH, Reenberg A (2016) Hotspots of land use change in Europe. Environ Res Lett 11:064020

    Article  Google Scholar 

  • La Salle J, Williams KJ, Moritz C (2016) Biodiversity analysis in the digital era. Phil Trans R Soc B 371:20150337

    Article  Google Scholar 

  • Laurance WF (2008) Theory meets reality: how habitat fragmentation research has transcended island biogeographic theory. Biol Conserv 141:1731–1744

    Article  Google Scholar 

  • Lepš J, Šmilauer P (2003) Multivariate analysis of ecological data using CANOCO, 1st edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Lindborg R, Helm A, Bommarco R, Heikkinen RK, Kühn I, Pykälä J, Pärtel M (2012) Effect of habitat area and isolation on plant trait distribution in European forests and grasslands. Ecography 35:356–363

    Article  Google Scholar 

  • Lindgren JP, Cousins SAO (2017) Island biogeography theory outweighs habitat amount hypothesis in predicting plant species richness in small grassland remnants. Landscape Ecol. https://doi.org/10.1007/s10980-017-0544-5

    Article  Google Scholar 

  • MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Moilanen A, Nieminen M (2002) Simple connectivity measures in spatial ecology. Ecology 83:1131–1145

    Article  Google Scholar 

  • Morris EK, Caruso T, Buscot F, Fischer M, Hancock C, Maier TS, Meiners T, Müller C, Obermaier E, Prati D, Socher SA, Sonnemann I, Wäschke N, Wubet T, Wurst S, Rillig MC (2014) Choosing and using diversity indices: insights for ecological applications from the German Biodiversity Exploratories. Ecol Evol 4:3514–3524

    Article  Google Scholar 

  • Mossberg B, Stenberg L (2010) Den nya nordiska floran. Bonnier Fakta, Stockholm

    Google Scholar 

  • Naimi B (2015) usdm: uncertainty analysis for species distribution models. R package version 1.1-15

  • Negoita L, Fridley JD, Lomolino MV, Mittelhauser G, Craine JM, Weiher E (2016) Isolation-driven functional assembly of plant communities on islands. Ecography 39:1066–1077

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2018) vegan: Community Ecology Package. R package version 2.4-6. https://CRAN.R-project.org/package=vegan

  • Panitsa M, Tzanoudakis D, Sfenthourakis S (2008) Turnover of plants on small islets of the eastern Aegean Sea within two decades. J Biogeogr 35:1049–1061

    Article  Google Scholar 

  • Pärtel M, Zobel M, Zobel K, van der Maarel E (1996) The species pool and its relation to species richness: evidence from estonian plant communities. Oikos 75:111–117

    Article  Google Scholar 

  • Patiño J, Whittaker RJ, Borges PAV, Fernández-Palacios JM, Ah-Peng C, Araújo MB, Ávila SP, Cardoso P, Cornuault J, de Boer EJ, de Nascimento L, Gil A, González-Castro A, Gruner DS, Heleno R, Hortal J, Illera JC, Kaiser-Bunbury CN, Matthews TJ, Papadopoulou A, Pettorelli N, Price JP, Steinbauer MJ, Santos AMC, Triantis KA, Valente L, Vargas P, Weigelt P, Emerson BC (2017) A roadmap for island biology: 50 fundamental questions after 50 years of the theory of island biogeography. J Biogeogr 44:963–983

    Article  Google Scholar 

  • Piessens K, Honnay O, Nackaerts K, Hermy M (2004) Plant species richness and composition of heathland relics in north-western Belgium: evidence for a rescue-effect? J Biogeogr 31:1683–1692

    Article  Google Scholar 

  • Plue J, Cousins SAO (2018) Seed dispersal in both space and time is necessary for plant diversity maintenance in fragmented landscapes. Oikos 127:780–791

    Article  Google Scholar 

  • Purvis A, Hector A (2000) Getting the measure of biodiversity. Nature 405:212

    CAS  Article  Google Scholar 

  • R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Schmucki R, Reimark J, Lindborg R, Cousins SAO (2012) Landscape context and management regime structure plant diversity in grassland communities. J Ecol 100:1164–1173

    Article  Google Scholar 

  • Stein A, Gerstner K, Kreft H (2014) Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol Lett 17:866–880

    Article  Google Scholar 

  • Sullivan MJP, Pearce-Higgins JW, Newson SE, Scholefield P, Brereton T, Oliver TH (2017) A national-scale model of linear features improves predictions of farmland biodiversity. J Appl Ecol 54:1776–1784

    Article  Google Scholar 

  • Tamme R, Götzenberger L, Zobel M, Bullock JM, Hooftman DAP, Kaasik A, Pärtel M (2014) Predicting species’ maximum dispersal distances from simple plant traits. Ecology 95:505–513

    Article  Google Scholar 

  • Thomson FJ, Moles AT, Auld TD, Kingsford RT (2011) Seed dispersal distance is more strongly correlated with plant height than with seed mass. J Ecol 99:1299–1307

    Article  Google Scholar 

  • Turner IM (1996) Species loss in fragments of tropical rain forest: a review of the evidence. J Appl Ecol 33:200–209

    Article  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S. Fourth Edition, New York

    Book  Google Scholar 

  • Wallace AR (1880) Island life: or, the phenomena and causes of insular faunas and floras, including a revision and attempted solution of the problem of geological climates. Macmillan & Co., London

    Google Scholar 

  • Wardle DA (2002) Islands as model systems for understanding how species affect ecosystem properties. J Biogeogr 29:583

    Article  Google Scholar 

  • Watson HC (1835) Remarks on the geographical distribution of British plants: chiefly in connection with latitude, elevation, and climate. Longman, Rees, Orme, Brown, Green, and Longman, Paternoster-Row

    Book  Google Scholar 

  • Watson JEM, Jones KR, Fuller RA, Marco MD, Segan DB, Butchart SHM, Allan JR, McDonald-Madden E, Venter O (2016) Persistent disparities between recent rates of habitat conversion and protection and implications for future global conservation targets. Conserv Lett 9:413–421

    Article  Google Scholar 

  • Whittaker RJ, Fernandez-Palacios JM (2007) Island biogeography: ecology, evolution, and conservation. OUP Oxford, Oxford

    Google Scholar 

  • Whittaker RJ, Fernández-Palacios JM, Matthews TJ, Borregaard MK, Triantis KA (2017) Island biogeography: taking the long view of nature’s laboratories. Science 357:eaam8326

    Article  Google Scholar 

  • Wilsey BJ, Chalcraft DR, Bowles CM, Willig MR (2005) Relationships among indices suggest that richness is an incomplete surrogate for grassland biodiversity. Ecology 86:1178–1184

    Article  Google Scholar 

  • Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14

    Article  Google Scholar 


Page 2

From: Species richness and composition differ in response to landscape and biogeography

  Mean SD Min Max
Species richness 58 ± 44 7 208
Island area 4.8 ± 10.8 0.002 54.4
Island height 6.5 ± 5.3 1.3 32.3
Distance to mainland 14.5 ± 5.0 6.8 24.0
Habitat heterogeneity 0.222 ± 0.240 0 1.04
Connectivity 100 m 4.7 ± 8.2 0 41.7
Connectivity 1000 m 16.1 ± 73.9 0.17 785.0
Connectivity 4000 m 81.8 ± 137.4 0.94 744.5

  1. Mean values (Mean), standard deviation (SD), minimum (Min), and maximum (Max) for species richness, island area (hectare), island height (metres), distance to mainland (kilometres), habitat heterogeneity, and structural connectivity (hectare) for the 112 islands in Stockholm archipelago, Baltic Sea