If atp is not present, the calvin cycle will shut down.

If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

Wayne's WordIndexNoteworthy PlantsTriviaLemnaceaeBiology 101BotanySearch

Supplements To Biology 101 Cell Unit

1. Fluorescence In A Chlorophyll Solution

If atp is not present, the calvin cycle will shut down.
If atp is not present, the calvin cycle will shut down.

Left: A transparent-green chlorophyll solution of ground up spinach leaves and acetone. Right: Beam of light directed at the chlorophyll solution producing a reddish glow called fluorescence.

A transparent-green chlorophyll solution can be made by grinding up spinach leaves or grass with acetone in a mortar and pestle. The solution is then filtered through cheesecloth and coarse filter paper to remove the impurities and debris. Chlorophyll molecules impart the green color to the solution; however, the actual chloroplasts and thylakoid membranes have been dissolved. When a bright beam of light is directed at the chlorophyll solution in the test tube, it gives off a reddish glow. This phenomenon is known as fluorescence. The chlorophyll electrons become excited by the light energy, but have no cytochrome transport system to flow along because the chloroplast thylakoid membranes have been dissolved away. Therefore, the chlorophyll electrons give up their excited energy state by releasing energy in the form of a reddish glow. This is essentially the same phenomenon as a neon light, except the electrons of neon gas molecules in the glass tube become excited and then release their energy as a white glow.

2. Simplified Illustration Of A Mitochondrion

If atp is not present, the calvin cycle will shut down.

Illustration of a mitochondrion. The inner membrane forms a series of inwardly-projecting folds called cristae. Electrons from glucose are shuttled through a cytochrome transport system along the membranes of the cristae. During this electron transport process, ATP is generated by a complex chemical mechanism known as chemiosmosis. Most of the ATP in animal cells is generated within the mitochondria. Plants can also generate ATP by a similar mechanism along thylakoid membranes of their chloroplasts.

3. ATP Structure & Function

If atp is not present, the calvin cycle will shut down.

If atp is not present, the calvin cycle will shut down.

The structure of adenosine monophosphate, an RNA nucleotide containing the purine base adenine, is very similar to ATP (adenosine triphosphate), except that ATP has three phosphates (PO4) instead of one. ATP is synthesized in all living cells by the addition of a phosphate to ADP (adenosine diphosphate). ATP is the vital energy molecule of all living systems which is absolutely necessary for key biochemical reactions within the cells. The terminal (3rd) phosphate of ATP is transferred to other molecules in the cell, thereby making them more reactive. For example, the monosaccharide glucose is very stable at ordinary body temperatures and would require a great amount of heat (such as from a flame) to break it down into carbon dioxide and water. After receiving a phosphate from ATP (a process called phosphorylation), glucose becomes glucose-phosphate and can be enzymatically broken down within seconds.

Most of the ATP in eukaryotic cells of animals is made inside cellular organelles called mitochondria from the oxidation of glucose, a process called cellular respiration. Glucose combines with oxygen (oxidation), forming carbon dioxide, water and 38 molecules of ATP. During the oxidation process, electrons from glucose are shuttled through an iron-containing cytochrome enzyme system on the inner mitochondrial membranes (called cristae). The actual synthesis of ATP from the coupling of ADP (adenosine diphosphate) with phosphate is very complicated and involves a mechanism called chemiosmosis. The electron flow generates a higher concentration (charge) of positively-charged hydrogen (H+) ions (or protons) on one side of the membrane. When one side of the membrane is sufficiently "charged," these protons recross the membrane through special channels (pores) containing the enzyme ATP synthetase, as molecules of ATP are produced. The detailed, step-by-step breakdown of glucose during cellular respiration is called the Krebs Cycle or Citric Acid Cycle.

4. Simplified Illustration Of A Chloroplast

If atp is not present, the calvin cycle will shut down.

Illustration of a chloroplast showing the outer and inner layers of the phospholipid bilayer membrane. Each stack of thylakoid disks represents one granum. The light reactions of photosynthesis occur in the grana. The area between the grana is called the stroma. This is where the dark reactions of photosynthesis occur. In the light reactions, excited electrons from chlorophyll flow through a cytochrome transport system along membranes of the thylakoid disks (thylakoid membranes). During this electron transport process, ATP and NADPH2 are generated. In the dark reactions of the stroma, CO2 is gradually converted into glucose through a series of reactions called the Calvin Cycle.

Light Reactions Of Photosynthesis

In addition to mitochondrial ATP synthesis, plants can also make ATP by a similar process during the light reactions of photosynthesis within their chloroplasts. Electrons flow through a cytochrome transport system on thylakoid membranes in a region of the chloroplast called the grana; except that the electrons come from excited (light activated) chlorophyll molecules rather than the break down of glucose. This is an especially vital source of ATP for plants because ATP is also needed for them to synthesize glucose in the first place. Without a photosynthetic source of ATP, plants would be using up their ATP to make glucose, and then using up glucose to make ATP, a "catch-22" situation.

A transparent-green solution of chlorophyll is made by grinding up spinach or grass leaves in acetone (in a mortar and pestle), and then filtering it through cheesecloth and course filter paper. When a bright beam of light is directed at this chlorophyll solution, a deep red glow is emitted from the test tube. The chlorophyll electrons become excited by the light energy, but have no cytochrome transport system to flow along because the chloroplast thylakoid membranes have been dissolved away. Therefore, the chlorophyll electrons give up their excited energy state by releasing energy in the form of a reddish glow. This phenomenon is known as fluorescence, and is essentially the same principle as a fluorescent light bulb. In a fluorescent light bulb, the electrons of neon gas become excited and then release their energy of activation as a white glow inside the glass tube. In an intact chloroplast with thylakoid membranes, ATP is generated by an electron flow along the cytochrome transport system. Since the electrons are being transported to other "carrier" molecules, their energy is used to generate ATP and no reddish glow is emitted. Leaves generally appear green because wavelengths of light from the red and blue regions of the visible spectrum are necessary to excite the chloroplast electrons, and unused green light is reflected. Thus, we perceive trees, shrubs and grasses as green. During the fall months when chlorophyll production ceases in deciduous trees and shrubs, the leaves turn golden yellow or red due to the presence of other pigments, such as yellow and orange carotenoids and bright red anthocyanins.

Another important ingredient for photosynthesis is also produced during the light reactions. During these light-dependent reactions of photosynthesis, a chemical called NADP (nicotinamide adenine dinucleotide phosphate) picks up two hydrogen atoms from water molecules forming NADPH2, a powerful reducing agent that is used to convert carbon dioxide into glucose during the dark reactions of photosynthesis (also called the Calvin Cycle). When the two atoms of hydrogen join with NADP, oxygen is liberated, and this is the source of oxygen gas in our atmosphere. ATP and NADPH2from the light reactions are used in the dark reactions of photosynthesis that take place in the stroma region of the chloroplast.

NADP (the vital coenzyme required for photosynthesis) is derived from nicotinic acid, a B-vitamin also known as niacin. Niacin prevents pellagra, a disease characterized by severe damage to the tongue, skin and digestive tract. [NAD is another vital coenzyme that carries electrons to the electron transport system in mitochondria.] Nicotine, the alkaloid in tobacco responsible for its highly addictive properties, is also derived from nicotinic acid. Nicotine is a mild stimulant of the central nervous system. In its pure form, nicotine is highly poisonous and is used as an insecticide.

Read About Plant Alkaloids

Dark Reactions Of Photosynthesis

In the dark reactions of photosynthesis (also known as the Calvin Cycle), carbon dioxide (CO2) is converted into glucose through a series of complicated reactions involving ATP (adenosine triphosphate) and NADPH2 (nicotinamide adenine dinucleotide phosphate), two essential compounds synthesized during the light reactions of daylight. Ordinary C-3 plants form a 3-carbon compound called phosphoglyceric acid (PGA) during the initial steps of the dark reactions. The PGA is converted into another 3-carbon compound called phosphoglyceraldehyde (PGAL). Two PGAL molecules combine to form a 6-carbon glucose molecule. The following equation shows the overall reactants and products of photosynthesis:

6 CO2 + 6 H2O (ATP & NADPH2 from Light Reactions) = C6H12O6 + 6 O2

Note: The oxygen liberated during the light reactions of photosynthesis comes from water.

CAM Photosynthesis

Some plants adapted to hot, arid regions have a different photosynthetic mechanism called CAM photosynthesis. CAM (Crassulacean Acid Metabolism) photosynthesis is found in cacti and succulents, including the crassula family (Crassulaceae). During the hot daylight hours their stomata are tightly closed; however they still carry on vital photosynthesis as carbon dioxide gas is converted into simple sugars. During the cooler hours of darkness their stomata are open and CO2 enters the leaf cells where it combines with PEP (phosphoenolpyruvate) to form 4-carbon organic acids (malic and isocitric acids). The 4-carbon acids are stored in the vacuoles of photosynthetic cells in the leaf. During the daylight hours the 4-carbon acids break down releasing CO2 for the dark reactions (Calvin cycle) of photosynthesis inside the stroma of chloroplasts. The CO2 is converted into glucose through a series of complicated reactions involving ATP (adenosine triphosphate) and NADPH2 (nicotinamide adenine dinucleotide phosphate), the latter two compounds which were synthesized during the light reactions of daylight in the grana of chloroplasts. The adaptive advantage of CAM photosynthesis is that plants in arid regions can keep their stomata closed during the daytime, thereby reducing water loss from the leaves through transpiration; however, they can still carry on photosynthesis with a reserve supply of CO2 that was trapped during the hours of darkness when the stomata were open. The tropical strangler Clusia rosea also has CAM photosynthesis. This unusual tree starts out as an epiphyte on other trees and then completely envelops and shades out its host. In fact, it greatly resembles strangler figs (Ficus) of tropical regions of the world.

See Clusia: A Tropical Strangler

C- 4 Photosynthesis

Another interesting modification of the photosynthetic pathway is called C-4 Photosynthesis. During C-4 photosynthesis, CO2 combines with phosphoenolpyruvate (PEP) to form a 4-carbon organic acid (oxaloacetic acid) which migrates (diffuses) to the photosynthetic bundle sheath cells surrounding the vascular bundles (veins) of the leaf. PEP essentially shuttles the CO2 to the bundle sheath cells where it is released for the dark reactions (Calvin cycle) of photosynthesis. During hot weather the CO2 level inside leaves is greatly reduced because the leaf stomata are closed. In ordinary C-3 plants which form a 3-carbon compound (PGA) during the initial steps of the dark reactions, photosynthesis in the leaf shuts down without a sufficient supply of CO2. C-4 plants have a competitive advantage during hot summer days because they are able to carry on photosynthesis in the bundle sheaths where CO2 levels are concentrated. Weedy C-4 plants such as Bermuda grass, spurges and purslane grow rapidly during hot summer days, while photosynthesis and growth in C-3 plants shuts down.

If atp is not present, the calvin cycle will shut down.
If atp is not present, the calvin cycle will shut down.

Left: Purslane (Portulaca oleracea), a European herbin the purslane family (Portulacaceae) that is naturalized throughout southern California. Although it is considered a weed to most gardeners, it actually makes a tasty steamed vegetable. Right: Close-up view of a purslane leaf showing the prominent green veins. Purslane is a classic C-4 plant in which the chloroplasts are concentrated in bundle sheath cells surrounding the veins.

ATP Production In Bacteria

Similar electron transport systems occur in the membranes of prokaryotic bacteria. Methanogenic bacteria live in marshes, swamps and your gastrointestinal tract. In fact, they are responsible for some intestinal gas, particularly the combustible component of flatulence. They produce methane gas anaerobically (without oxygen) by removing the electrons from hydrogen gas. The electrons and H+ ions from hydrogen gas are used to reduce carbon dioxide to methane. In the reaction, the H+ ions combine with the oxygen from carbon dioxide to form water. During this process, the electrons are shuttled through an anaerobic electron transport system within the bacterial membrane which results in the phosphorylation of ADP (adenosine diphosphate) to form ATP (adenosine triphosphate). This process is much less efficient than aerobic respiration, so only two molecules of ATP (rather than 38) are formed. Desert varnish bacteria make their ATP in a similar fashion, only the electrons are coming from the aerobic oxidation of iron and manganese. A thin coating of iron or manganese oxide is deposited on the surfaces of desert boulders and rocky slopes. During the oxidation process, the electrons are shuttled through an iron-containing cytochrome enzyme system on the inner bacterial membrane. One has only to gaze at the spectacular panoramas of varnish-coated, granitic boulders throughout desert areas of the American southwest to appreciate the magnitude of this bacterial ATP production. The mechanism of ATP synthesis in prokaryotic bacteria is remarkably similar to eukaryotic cells. In addition, the circular DNA molecules of these bacteria are similar to the DNA molecules within some organelles of eukaryotic cells. In fact, some biologists believe that mitochondria and chloroplasts within eukaryotic animal and plant cells may have originated from ancient symbiotic bacteria that were once captured by other cells in the distant geologic past. This fascinating idea is called the "Endosymbiont Theory" (or "Endosymbiont Hypothesis" for those who are more skeptical).

5. Guard Cells & Stomata On Leaves & Stems

If atp is not present, the calvin cycle will shut down.

The leaf surface of a species of Tradescantia, also known as spiderwort (Commelinaceae), a plant that is commonly grown in hanging baskets. Note the paired guard cells and stoma (opening slit) between them (circled in red). Also note the scattered hairs (trichomes). Each hair arises from a pedestal-like basal cell containing a nucleus.

Plants carry on gas exchange through minute pores called stomata. Carbon dioxide from the atmosphere enters the stomata and oxygen produced by photosynthesis diffuses out of the stomata. Water molecules also escape through the stomata, especially in hot, dry weather. Water loss through the stomata is known as transpiration. If the plant loses too much water it will wilt and eventually die. To cope with this dilemma, plants have evolved paired guard cells on each side of the stoma. When the guard cells are fully turgid or expanded, they have an elongate opening (stoma) between them. The walls adjacent to the stoma are very thin and flexible, while the outer walls on the opposite sides of the stoma are much thicker and more rigid. This differential thickening causes an opening to develop when the guard cells are inflated by internal water pressure (called turgor pressure). When the guard cells lose water on a hot day, they become deflated and push together, thus closing off the stoma. This cleaver strategy prevents the plants from losing excessive water through transpiration. See the following highly magnified view of the paired guard cells:

If atp is not present, the calvin cycle will shut down.

Microscopic view of the paired guard cells and stoma on the leaf surface of spiderwort (Tradescantia). An opening or stoma develops between the inflated (turgid) guard cells due to a differential thickening of their walls. When the guard cells lose water pressure on a hot day, they deflate and push together, thus closing off the stoma and reducing water loss (transpiration) through the leaf.

All text material & images on these pages copyright © W.P. Armstrong


Page 2

  1. Some Notes On The Identification Of Duckweeds
  2. A Brief Technical Description Of The Lemnoideae
       Aerenchyma: Tissue With Intercellular Air Spaces
       Bisexual Flowers & One-Seeded Fruits Of Duckweeds
  3. Some Generalizations About The Duckweed Subfamily
       Stomata On The Upper Surface Of Duckweed Species
       The Leaflike Prophyllum Of Spirodela & Landoltia
       Winged Root Sheath In Two Species Of Lemna
  4. Cladograms Of The Duckweeed Subfamily (Lemnoideae)
  5. Controversies Over Landoltia (Spirodela) punctata
  6. Updated Key To The Five Genera Including Landoltia
  7. ID Of Species That Are Morphologically Very Similar
       Nerves (Veins) & Air Spaces In Duckweed Identification
       Dorsal Papules Separating L. turionifera From L. minor  
  8. Importance Of Backlighting When Identifying Duckweeds
       Elongated Tract Of Cells (Costa) In Wolffiella ID
  9. Photoperiodism (Day Length) In The Duckweed Subfamily
  10. Aseptic (Axenic) Culture Of Duckweeds In Agar Media
  11. Control Of Duckweed Blooms In Ponds And Reservoirs
  12. Wayne's Word & Lemnoideae On-Line Copyright Policy
  13. Index And Keys To The Genera Of Lemnoideae

    Additional Links On Other Pages:

    This Page Is Dedicated To Dr. Elias Landolt (1926-2013)

    Although I never met him in person, I corresponded with Elias Landolt of the Geobotanical Institute in Zurich, Switzerland extensively during the past 30 years. In fact, he sent me aseptic cultures of numerous species that I grew and photographed at my home in San Marcos, CA. I could have never learned about duckweed taxonomy or published my articles without first hand observations of his marvelous specimens and his outstanding Monograph of the Lemnaceae. He was a brilliant scientist and was so willing to share his phenomenal knowledge. Elias Landolt was truly an inspiration in my life. I will miss him and I will never forget him. WPA, September 2013

       Link To Landolt Duckweed Collection     http://www.duckweed.ch/  
    Dr. Landolt's assistant Walter Lämmier has created a valuable website dedicated to the Landolt Duckweed Collection. This remarkable collection contains samples of every known species of duckweed in the world. The purpose of the collection is to preserve these species in order to provide living samples available for research and also to provide a forum for the exchange of information. The study of duckweeds is important. In a world of increasingly scarce resources we continually discover many new useful applications. Duckweed is a source of animal feed, a means of purifying polluted water, and it can also be used in the generation of renewable forms of energy.

    1. Some Notes On Duckweed Identification

    Since flowering and fruiting are rarely observed in most species of Lemnaceae, the following keys and descriptions are based primarily on vegetative characteristics. Minor traits which might seem insignificant in morphologically complex plants assume greater importance in the Lemnaceae. Ideally, it is best to observe living plants under a 30X dissecting microscope, preferably with substage lighting to view veins and the shape of budding pouches (dried herbarium specimens can be hydrated in water to obtain a resemblance of their former shape). For difficult species it is often necessary to grow them in containers to observe the development of diagnostic features such as shape, size, number of plants cohering, nervation, anthocyanin pigmentation and turions. Some species may exhibit considerable morphological variation, particularly when growing under less than optimal environmental conditions, making their precise vegetative identification very difficult.

    If atp is not present, the calvin cycle will shut down.

    A flowering Wolffia microscopica next to the tip of a sewing needle. The unusual "golf tee" shape is unique among all wolffia species. A minute stamen can be seen protruding from the upper (expanded) side of the plant body.

    See Straight Pin & Sewing Needle Used In Wayne's Word Articles

    2. A Brief Technical Description Of The Duckweed Family

    Duckweeds are small aquatic herbs floating on or below the surface of quiet streams and ponds, often forming dense, homogeneous clonal populations. The plant body is not differentiated into a stem or leaf. It is reduced to a fleshy or thalluslike ovoid or flattened structure bearing one-several roots (without root hairs) on the underside, or rootless. The terms dorsal and ventral are often used in the literature for the upper and lower surfaces of the plant body floating in water. The terms adaxial and abaxial are typically used for leaves, referring to the surface adjacent to the leaf axil (adaxial) and the opposite surface away from the leaf axil (abaxial). Adaxial and abaxial also refer to the upper and lower sides of a leaf; however, the abaxial side is also the back or dorsal side. This terminology is especially appropriate for leaves arranged vertically on a stem. Since the plant body of a duckweed is not technically a leaf, the terms adaxial and abaxial are confusing for general descriptions. For duckweeds it is preferable to use upper and lower surface. [Thanks to Elena George of Humboldt State University for bringing this to my attention].

    The plant body often has one-several layers of conspicuous air spaces (aerenchyma) and one-several veins (nerves). Daughter plants are produced in a budding pouch at the basal end or along the 2 lateral margins of parent plant, often remaining attached to parent plant by a short stipe. Some species produce rootless (or very short-rooted), starch-filled daughter plants, called turions that sink to the bottom and overwinter. Flowers are bisexual and usually protogynous, the androecium consisting of 1 or 2 stamens and the gynoecium consisting of a single pistil. The flowers are produced in a floral cavity on the dorsal surface (Wolffiella and Wolffia), or in a membranous, saclike spathe (utricular scale) within a lateral budding pouch (Spirodela, Landoltia and Lemna). Some authorities consider duckweed species to be monoecious with one or two staminate flowers (each consisting of a single stamen) and a pistillate flower (consisting of a single pistil). There is no corolla or calyx. The ovary is superior and unilocular with a short style and circular concave stigma. The stigma often secretes a fluid droplet at anthesis. The stamen has a short filament and unilocular or bilocular anther, transversely or apically dehiscent, bearing spinulose pollen grains. The fruit an indehiscent, bladderlike utricle containing one-several seeds with prominent operculum.

    The traditional duckweed family (lemnaceae) contains 5 genera and at least 38 species. DNA studies indicate that duckweeds are best included within the Araceae. Duckweeds have a worldwide distribution, especially temperate and tropical regions. They are the smallest and structurally simplest of all angiosperms, with greatly reduced vascular tissue (tracheids) limited to the veins of plant body, filaments of stamens, and roots of some species. Duckweeds and associated microfauna are an important food source for certain waterfowl. They are potentially valuable for waste-water reclamation and one species, (Wolffia globosa (Roxb.) Hartog & Plas) known locally as "khai-nam," is eaten by people in S.E. Asia.

    Major References On The Taxonomy Of Duckweeds:

    1. Landolt, E. 1986. "The Family of Lemnaceae: A Monographic Study" (Vol. 1). Veroff. Geobot. Inst. ETH, Stiftung Rubel 71.

    2. Landolt, E. and R. Kandeler. 1987. "The Family of Lemnaceae: A Monographic Study" (Vol. 2). Veroff. Geobot. Inst. ETH, Stiftung Rubel 71.

    3. Landolt, E. 1957. "Physiologische und okologische Untersuchungen an Lemnaceen." Ber. Schweiz. Bot. Ges. 67: 271-410.

    If atp is not present, the calvin cycle will shut down.

    Aerenchyma tissue in the duckweed Lemna minuta (1000x). The large intercellular spaces are surrounded by layers of choroplast-bearing parenchyma cells. The air-filled spaces provide buoyancy for the duckweeds, keeping them afloat on the water surface. Although enlarged air spaces may provide a competitive advantage for increased buoyancy, some species have greatly reduced air spaces and float below the water surface.

    If atp is not present, the calvin cycle will shut down.

    Dorsal view of Lemna gibba in full bloom. Two stamens and a short style are projecting from a lateral budding pouch at the base of the plant. The androecium consists of two pollen-bearing stamens. The gynoecium consists of a single pistil with a concave stigma, slender style and basal ovary bearing a one or two ovules. The bisexual flower is enclosed within a membranous saclike spathe within the budding pouch. Note: Some authorities consider the duckweeds to be monoecious species with one or two staminate flowers (each consisting of one stamen) and one pistillate flower (consisting of a single pistil) on the same plant body.

    Dorsal View of the Bisexual Flower of Landoltia punctata

    If atp is not present, the calvin cycle will shut down.

    Lateral view of flowering Wolffia borealis showing the dorsal floral cavity containing one anther-bearing stamen and one pistil (gynoecium). The pistil has a seed-bearing ovary, a slender (short) style and a circular, concave stigma. The flowers are protogynous, with the stigma becoming receptive before the anther matures and sheds pollen. A daughter plant protrudes from a funnel-like budding pouch at the basal end. The entire flowering plant is only one millimeter (1/25th of an inch) in length. It weighs approximately 200 micrograms (roughly 1/150,000 of an ounce).

    If atp is not present, the calvin cycle will shut down.

    Dorsal view of several budding Wolffia borealis in full bloom. The floral cavity on the dorsal side reveals a circular concave stigma (nearest the basal end) and a single, pollen-bearing anther. Unlike Lemna, Spirodela and Landoltia, the flower is not enclosed within a membranous spathe. The flowers are protogynous, with the stigma becoming receptive before the anther matures and sheds pollen. The far right plant shows only the stigma, while the far left plant shows only the anther. The top and bottom plants show both the stigma and a faint anther.

    If atp is not present, the calvin cycle will shut down.

    Utricles of the duckweed family (Lemnaceae). The utricle is a small, bladderlike, thin-walled fruit. It is often compared with a one-seeded achene, except the utricle has a pericarp that is loose and fragile. Because of their small size (usually only 1-2 mm or less), utricles of the duckweed family are seldom seen. In fact, the one-seeded utricles of Wolffia species are the undisputed smallest fruits on earth. The smallest are from the Australian W. angusta and the Asian/African W. globosa.

    If atp is not present, the calvin cycle will shut down.

    The world's smallest fruits are produced by species of Wolffia, including the Australian W. angusta. The above image shows a mature fruit within the plant body. The larger fruit of Lemna shows a thin, transparent pericarp surrounding a ribbed seed. A pericarp layer is not evident on the wolffia fruits.

    If atp is not present, the calvin cycle will shut down.

    Germinated seeds of Lemna perpusilla showing seedlings with attached seeds.

    Two of the Wolffia species included in Landolt's 1986 Monograph of the Lemnaceae (Vol. 1) have each been split into two species (E. Landolt, 1994, Ber. Geobot. Inst. ETH, Stiftung Rubel 60). The justification for two additional Wolffia species is based on allozyme studies by D.J. Crawford, Columbus, Ohio (Crawford, D.J. & E. Landolt, 1995, Allozyme Diversity Among Species of Wolffia (Lemnaceae), Plant Systematics & Evolution 197: 59-70). South African populations of W. globosa (Roxb.) Hartog & Plas are now recognized as W. cylindracea Hegelm., an older name used in the literature since Hegelmaier (1868). The widespread Asian W. globosa (also from California and southern Florida) has been retained as W. globosa. Populations of W. angusta Landolt in Pakistan and India have been named W. neglecta Landolt. The Malaysian and Australian populations of W. angusta have been retained as W. angusta. In addition, a new species of Wolffiella from the Amazon Basin has been named W. caudata Landolt (E. Landolt, 1992, Ber. Geobot. Inst. ETH, Stiftung Rubel 58). The specific epithet for this latter curious species refers to the tail-like, tapering distal end of the plant body (See WAYNE'S WORD: Weird Duckweeds From Far Away Lands). Another new species of Lemna (L. yungensis) was also described by Landolt from vertical wet rocks of the Andean Yugas in Bolivia (E. Landolt, 1998, Bulletin of the Geobotanical Institute ETH 64). D.H. Les and D.J. Crawford (1999) have proposed the new genus Landoltia containing one species L. punctata, formerly Spirodela punctata. This species is morphologically intermediate between Lemna and Spirodela. According to Les & Crawford, it represents an isolated clade distinct from both Lemna and Spirodela. [Les, D.H. and D.J. Crawford. 1999. "Landoltia (Lemnaceae), A New Genus of Duckweeds." Novon 9: 530-533.] These revisions raise the total worldwide number of taxa in the Lemnaceae to 38 species in five genera.

    If atp is not present, the calvin cycle will shut down.

    Mudmidgets (Wolffiella lingulata) in full bloom. This is a dorsal view showing several broad, lingulate (tongue-shaped) plants with their free ends curved downward (recurved) in the water. Each plant has an immature yellow anther protruding from a floral cavity. The lower plants show a minute circular stigma adjacent to the anther. The plants are about 7 mm in length. The genus Wolffiella includes some of the most bizarre of all flowering plants. Although the generic name for mudmigets refers to the diminutive of Wolffia, they are not as small as Wolffia species.

    If atp is not present, the calvin cycle will shut down.

    A juice strainer filled with Wolffiella lingulata. The thousands of recurved, lingulate plants resemble translucent green leaves or shavings.

  14. 3. Some Generalizations About The Duckweed Family

    The duckweed family is well represented in western North America with nearly half of the world's species. The plant body of duckweeds is quite unlike other flowering plants because it does not have stems or leaves. It represents the ultimate in reduction of an entire vascular plant. The terms "frond" and "thallus" are sometimes used in the literature, but these terms are not appropriate because the plant body of duckweeds is not homologous to the fronds of ferns or the body of fungi and algae. Although the body of duckweeds does have paired guard cells and stomata on its upper surface and superficially resembles a leaf (particularly the flattened duckweeds Spirodela, Landoltia and Lemna), it is morphologically and embryonically completely different. In Spirodela, Landoltia and Lemna it is a flattened structure with slender, hairlike roots on the underside. Spirodela and Landoltia are unique among duckweeds because of a minute, membranous scalelike leaf (prophyllum) enveloping the dorsal and ventral surfaces of the basal end. In Spirodela polyrrhiza the prophyllum is visible on young plants (fugacious in older plants) and on overwintering turions. This basal portion and its connecting stalk correspond to a condensed shoot that has become greatly reduced through evolution. Landoltia has a reduced prophyllum that perishes in full grown plants. A prophyllum is lacking in Lemna, Wolffia and Wolffiella. The latter two genera have been reduced through evolution to minute, rootless spheres or flattened ribbons. Wolffia has a minute globose or ovoid body one mm long or less. In Wolffiella the thalluslike body is transparent and flattened, with the free ends often curved downward in the water.

    If atp is not present, the calvin cycle will shut down.

    Magnified view (1000x) of the upper surface of Lemna minuta showing a pore slit (stoma) flanked by two slender guard cells. The cells surrounding the stoma resemble the subsidiary cells of true leaves. Although the plant bodies of duckweeds have stomata and carry on gas exchange with the atmosphere, they are not homologous to leaves.

    See Stomata & Subsidiary Cells Of A True Leaf (Tradescantia)

    If atp is not present, the calvin cycle will shut down.

    Turion of Spirodela polyrrhiza. Note the minute, transparent, bractlike leaf called a prophyllum at the basal end. The prophyllum overlaps both the dorsal and ventral sides of the turion, but is more visible on the lower (ventral) surface. The prophyllum of Landoltia punctata is much smaller. If the prophyllum is homologous to a leaf in its embryonic origin, then it is one of the world's smallest leaves.

    See Prophyllum On Turions Of Spirodela polyrrhiza

    If atp is not present, the calvin cycle will shut down.

    Ventral side of a hydrated herbarium specimen of Landoltia punctata. A budding pouch in the parent plant bears a younger, daughter plant extending horizontally to the right in photo. The daughter plant shows a scalelike prophyllum that is penetrated by two roots. The ventral prophyllum is very difficult to see without careful examination under a dissecting microscope. A prophyllum is present in the genera Landoltia and Spirodela. It is a membranous, scalelike leaf that envelops the dorsal and ventral surfaces of the basal end, but usually is not evident in older plants. The prophyllum portion and its connecting stalk are homologous to a condensed shoot that has become greatly reduced through evolution. More advanced genera, such as Lemna, Wolffiella and Wolffia lack a prophyllum.

    If atp is not present, the calvin cycle will shut down.

    Underside of a hydrated herbarium specimen of Spirodela polyrrhiza showing a small, scalelike prophyllum at the basal end of a daughter plant. This species has 7-12 or more roots, with one or two roots passing through the ventral prophyllum. Most of the roots are outside the margin of the prophyllum. The prophyllum is more evident on young daughter plants. Spirodela and Landoltia are the only duckweed genera with a prophyllum. This scalelike, basal leaf is absent in the more advanced genera, including Lemna, Wolffiella and Wolffia.

    Although all species of Lemna have a basal root sheath near the attachment node, two species in section Alatae (L. aequinoctialis and L. perpusilla) have a distinctive root sheath with 2 lateral wing-like appendages.

    If atp is not present, the calvin cycle will shut down.

    Underside of Lemna aequinoctialis showing winged root sheath near the basal attachment node. This species has one prominent apical papule on the upper side. The seeds have 8-26 distinct ribs and generally fall out of fruit wall at maturity. The closely-related L. perpusilla of the eastern United States also has a root sheath with 2 lateral wing-like appendages at the base. It has seeds with 35-70 indistinct ribs, remaining within fruit wall after ripening.

    Elongated tracts of cells called nerves are present in Lemna, Landoltia and Spirodela. They originate at the node (point of root attachment) and extend through the plant body toward the distal (apical) region. A similar tract of elongated cells (called the costa) can be seen in the triagular budding pouch of Wolffiella. The position of the coasta in relation to the budding pouch is an important characteristic used to separate W. lingulata from W. oblonga. Tracts of elongated cells also extend through the center of the roots of Lemna, Landoltia and Spirodela. Nerves and tracts of elongated cells may serve to transport minerals and sugars, similar to the function of veins. In some species of Lemna, Landoltia and Spirodela, the elongated cells of nerves contain tracheids with ring-shaped or spiral-shaped thickenings in the walls (annular tracheids). These elongated cells are not called veins because the plant bodies of duckweeds are not homologous to leaves.

    4. Cladogram Of The Duckweed Family

    Different genes within the nucleus and cytoplasmic organelles (chloroplast and mitochondria) can be used to construct phylogenetic trees called cladograms. One gene in the nucleolus codes for the smaller subunit of the ribosome. The gene is called SSU rDNA or small subunit ribosomal DNA. Base sequences from this gene are sometimes used to compare taxa at the species level. Chloroplast DNA, including the protein-coding rbcL gene, is often used at the family level to show the relationships between genera and species within the family. Introns are also used to construct family trees. Introns are sections of messenger RNA that are removed prior to translation at the ribosome.

    Most botanists consider the Lemnaceae to be closely related to the arum family (Araceae), and comparative chloroplast DNA studies have confirmed this taxonomic affinity (Duvall, et al. Annals of the Missouri Botanical Garden Vol. 80, 1993). In fact, several authorities have proposed some drastic and significant changes in the classification of many traditional angiosperm families, including the placement of all duckweeds in the Araceae rather than the Lemnaceae. [See: Angiosperm Phylogeny Group. 1998. "An Ordinal Classification For The Families Of Flowering Plants." Annals of the Missouri Botanical Garden 85: 531-553; Judd, W., C. Campbell, T. Kellogg and P. Stevens. 2002. Plant Systematics: A Phylogenetic Approach. Sinauer Associates, Inc., Sunderland, MA. Some of these proposed changes are summarized in an article by E. Dean in Fremontia 30 (2): 3-12, 2003. If accepted by the botanical community, the incorporation of these changes into botany textbooks, floras, checklists and herbarium collections will be a formidable task.

    Computer-generated evolutionary trees or cladograms have been used to show the taxonomic relationships of duckweed species within the family. The cladograms are based on thousands of data characters, including morphology, anatomy, flavonoids, allozymes, and DNA sequences from chloroplast genes and introns. The branch (clade) length and position in the tree correspond to the number of character differences between taxa. The characters are numerically weighted according to their evolutionary importance. For example, a root would have a higher value than a papule. Cladograms are generated multiple times, and they don't always come out the same. The term "bootstrapping" refers to a cladogram or phylogenetic tree that comes out the same way out of a total number of times. For example, one thousand cladogram "trees" are generated and the same pattern comes out 900 times. This cladogram would have a bootstrap value of 90 percent. The following cladogram shows all the five genera and 38 species within the duckweed family (Lemnaceae). It was generated from DNA sequences of rbcL genes from all known members of the the family using the computer program PAUP:

    If atp is not present, the calvin cycle will shut down.

    A cladogram of the duckweed family based on the chloroplast gene rbcL. Five genera and 38 species are shown. According to the cladogram, the ancestral genus is Spirodela and the genusWolffia is placed farthest away because it has the fewest shared characters with Spirodela. Spirodela, Landoltia and Lemna are more closely related, while Wolffia and Wolffiella have more characters in common. With the exception of one new genus Landoltia and a few changes within sections of the family, most of the results are consistent with previous studies based solely on morphological characteristics made by meticulous botanists. Cladogram modified from Les, D.H., Crawford, D.J., Landolt, E., Gabel, J.D. and R.T. Kimball. 2002. "Phylogeny and Systematics of Lemnaceae, the Duckweed Family." Systematic Botany 27 (2): 221-240.

    See The Chemical Structure Of Flavonoids

    Because of their degree of reduction, Landolt (1986) considers the two diminutive genera Wolffia and Wolffiella to be the most recently evolved offshoots in the phylogeny of this family. Wolffia has the fewest shared characters with the presumed ancestral Spirodela and is placed farthest away in an evolutionary tree (cladogram). The new genus Landoltia is morphologically intermediate between Lemna and Spirodela. According to D.H. Les & D.J. Crawford (Novon 9: 530-533, 1999), it represents an isolated clade distinct from both Lemna and Spirodela. DNA comparisons of all members of the Lemnaceae by Les, et al. (Systematic Botany 27 (2): 221-240, 2002) indicate that all five genera represent distinct clades. With the exception of Landoltia and a few changes in sections, the 38 taxa recognized in the study by Les et al. (2002) are remarkably consistent with those recognized as morphologically distinct by Landolt.

    Duckweeds Now Placed In The Arum Family (Araceae)

    If atp is not present, the calvin cycle will shut down.

    Amorphophallus titanum

    Most authors now agree that duckweeds are an early offshoot from the aroid linkage (Araceae) and are represented in the fossil record since the late Cretaceous by the genus Limnobiophyllum. Although the latter genus has affinities with water lettuce (Pistia), the oldest fossils attributable to Pistia date back only to late Oligocene/early Miocene. Because of its morphological similarity, the aroid Pistia stratioides has been considered a close relative (cousin) of the Lemnaceae. Morphological analysis of the fossil paleocene aroid Limnobiophyllum scutatum by Stockey et al. (1997) indicates that Lemnaceae plus Pistia form a monophyletic group within the Araceae; however, more recent DNA cladistical analyses have different results. Phylogenetic studies by G.W. Rothwell et al. (2004) and L.I. Cabrera et al. (2008) indicate that Pistia and Lemnaceae belong to distantly related clades, suggesting at least two independent origins of the floating aquatic growth form within the arum family (Araceae).

      Cladogram From Cabrera et al. (2008)  
    More Amorphophallus titanum Images

    Therefore, Pistia cannot be considered a morphological intermediate between duckweeds and other arums. Maintaining Lemnaceae and Araceae as distinct families would make the arum family paraphyletic, with a common ancestor but not all of its decendants (i.e. duckweeds are excluded). Their cladograms are based on sequences of the trnL-trnF intergenic spacer region of the chloroplast genome. This spacer region is non-coding DNA between the trnL and trnF loci. Because it is non-coding, it is not under selection (not highly conserved), compared with highly conserved genes that code for structural products, regulatory proteins, or transfer RNAs. It is interesting to note that the duckweeds belong to the same plant family as the titan arum (Amorphophallus titanum). This remarkable plant has a 2.4 m erect spadix that protrudes from a vase-shaped, pleated spathe 4 m in circumference.

    1. Cabrera, L.I., Salazar, G.A., Chase, M.W., Mayo, S.J., Bogner, J., and P. Dávila. 2008. "Phylogenetic Relationships of Aroids and Duckweeds (Araceae) Inferred From Coding and Noncoding Plastid DNA." American Journal of Botany 95 (9): 1153-1165.

    2. Rothwell, G.W., Van Atta, M.R., Ballard Jr., H.E. and R.A. Stockey. 2004. "Molecular Phylogenetic Relationships among Lemnaceae and Araceae Using the Chloroplast trnL-trnF Intergenic Spacer." Molecular Phylogenetics and Evolution 30: 378-385.

    3. Stockey, R. A., Hoffman, G.L., and G. W. Rothwell. 1997. "The Fossil Monocot Limnobiophyllum scutatum: Resolving the Phylogeny of Lemnaceae." American Journal of Botany 84 (3): 355-368.

    If atp is not present, the calvin cycle will shut down.

    Pistia stratiotes: An aquatic member of the arum family (Araceae) with characteristics similar to the duckweed genus Spirodela. Phylogenetic studies using chloroplast DNA indicate that Pistia cannot be considered a morphological intermediate between duckweeds and other arums. Note the small white spathe (red arrow) surrounding the anthers at the apex of a reduced spadix.

    Limnobium: Floating Aquatic Superficially Resembling Spirodela

    If atp is not present, the calvin cycle will shut down.

    5. Controversies Over The Genus Landoltia

    Many traditional phylogenetic groupings of species within families and genera are not monophyletic and are inconsistent with modern cladistical analyses based on DNA. In other words, the groupings are paraphyletic or polyphyletic, and do not show all species within a group descending from a common ancestor. Monophyly is the natural evolutionary pattern in which all species are descended from a common ancestor. In order to have consistent computer-generated, monophyletic cladograms, it is sometimes necessary to change paraphyletic and polyphyletic groupings by moving species into different genera, and by moving genera into different families. Many of the taxonomic revisions in the Jepson Manual 2nd Edition (2012) were made in order to have consistent monophyletic groupings. This is why Spirodela punctata was placed in the genus Landoltia and why the Lemnaceae was placed in the familiy Araceae.

    If atp is not present, the calvin cycle will shut down.
    The cladogram (left) is from D.H. Les and D.J. Crawford (1999). It has high boot strap values and is based on molecular (rbcL) data from chloroplast DNA. It clearly shows that a grouping composed of 3 species of Spirodela is paraphyletic. This is why S. punctata was placed in the monotypic genus Landoltia.

      Monophyletic Groupings: All Descendants From A Common Ancestor  

    In 1999, D.H. Les and D.J. Crawford proposed the new genus Landoltia containing one species L. punctata, formerly Spirodela punctata. This species is morphologically intermediate between Lemna and Spirodela. According to Les & Crawford, it represents an isolated clade distinct from both Lemna and Spirodela. Without this change, the genus Spirodela would be paraphyletc.

    • Les, D.H., and D.J. Crawford. "Landoltia (Lemnaceae), A New Genus of Duckweeds." Novon 9: 530-533.

    Morphological
    Characteristic

    Spirodela intermedia Spirodela polyrrhiza

    Landoltia punctata Formerly Spirodela punctata

    Lemna All Species

    Prophyllum At Base Of Frond

    Present

    Present But Reduced

    Absent

    Number of Roots
    Penetrating Prophyllum

    S. intermedia: 2 to 5
    S. polyrrhiza: 1 (rarely 2)

    All Roots

    No Prophyllum

    Overwintering Turions

    S. intermedia: None
    S. polyrrhiza: Present

    None Distinct; Some Small
    Fronds Resemble Turions

    Present in
    L. turionifera

    No. of Veins In Frond

    7 to 16

    3 to 7

    1 to 5

    No. of Roots

    7 to 21

    Typically 2 to 5

    Only 1

    Root Tracheids

    Extend to Tip

    Basal Only

    Absent

    Dorsal Meristem of New Fronds

    On One Side
    (Lateral on other side.)

    On Both Sides

    On Both Sides

    External Anther Locules

    Do Not Extend Above
    Internal Locules

    Extend Slightly Above
    Internal Locules

    Extend Above The
    Internal Locules

    Brown Pigment Cells In Fronds

    Present

    Present

    Absent

    Cells With Crystals

    Raphides & Druses

    Raphides & Druses

    Raphides Only

    A comparison of morphological features between Landoltia, Spirodela and Lemna. With so few taxonomic characteristics, these assume a more important role in distinguishing genera. Spirodela punctata has a taxonomic position intermediate between Spirodela (S. intermedia & S. polyrrhiza) and Lemna. A hypothetical cladogram in Les and Crawford (1999) based on morphological data from Landolt (1986) revealed a paraphyletic grouping of Spirodela before Spirodela punctata was finally placed in the monotypic genus Landoltia.

    According to Professor Dr. Elias Landolt (personal communication, 2001), the creation of the new genus Landoltia is not necessary based on a purely morphological point of view; however, based on DNA and enzymatic studies, the change is warranted in order to form phylogenetically consistent taxa. The inclusion of a fifth genus Landoltia appears to be necessary based upon a comprehensive analysis of the Lemnaceae by D.H. Les, D.J. Crawford, E. Landolt, J.D. Gabel, and R.T. Kimball (2002). More that 4,700 characters were studied, including data from morphology and anatomy, flavonoids, allozymes, and DNA sequences from chloroplast genes (rbcL, matK) and introns (trnK, rpl16).

    The Angiosperm Phylogeny Group (APG) has proposed some significant changes in the classification of many traditional angiosperm families, including the placement of all duckweeds in the Araceae rather than the Lemnaceae. Nomenclatural changes are cited under the APG II system (2003) and superceeded by APG III system (2009). These changes are based on computer-generated evolutionary trees or cladograms. Thousands of data characters have been used, including morphology, anatomy, flavonoids, allozymes, and DNA sequences from chloroplast genes and introns. The Jepson Manual Second Edition (2012) essentially follows the changes summarized in the following reference by W.T. Judd, et al. 2008. Since the genus Landoltia was proposed by D.H. Les and D.J. Cawford in 1999, several classic papers on the phylogeny of the duckweed subfamily (Lemnoideae) and other aroids (Araceae) have used the name Landoltia. In my opinion, the name Landoltia is warranted because it is consistent with the objectives of the Jepson Manual 2nd Edition (2012) based on phylogenetic studies using plastid DNA.

    • Judd, W.S., Campbell, C.S., Kellogg, E.A., Stevens, P.F., and M.J. Donaghue. 2008. Plant Systematics: A Phylogenetic Approach (Third Edition). Sinauer Associates, Inc., Sunderland, Massachusetts. 611 p.

    • Les, D.H., D.J. Crawford, E. Landolt, J.D. Gabel, and R.T. Kimball. 2002. "Phylogeny and Systematics of Lemnaceae, the Duckweed Family." Systematic Botany 27 (2): 221-240.

    • Cabrera, L.I., Salazar, G.A., Chase, M.W., Mayo, S.J., Bogner, J., and P. Davilá. 2008. "Phylogenetic Relationships of Aroids and Duckweeds (Araceae) Inferred From Coding and Noncoding Plastid DNA." American Journal of Botany 95 (9): 1153-1165.

    Published Names For This Species

    Lemna punctata G.F.W. Meyer

    This was Meyer's original name based on the type specimen collected along the Essequibo River, Guyana, South America in 1818. Unfortunately, Meyer's original type specimen was lost.

    Spirodela punctata (G.F.W. Meyer) Thompson

    C.H. Thompson placed this species in the genus Spirodela in 1898. Since the type specimen was lost, he based the new name on a specimen from the 1938-1842 Wilkes Expedition, labeled Orange Harbor, Tierra del Fuego. According to Landolt (1986), Thompson neotypified this species in his 1898 publication.

    Landoltia punctata (G.F.W. Meyer) Les & D.J. Crawford

    In 1999, D.H. Les and D.J. Crawford placed this species in the genus Landoltia based on DNA evidence.

    Re-Neotypification Of G.F.W. Meyer's 1818 Type Specimen Of "Lemna punctata"

    Note: This is a complicated taxonomic subject involving many articles from the International Code of Nomenclature For Algae, Fungi, and Plants (Melbourne Code) 2011: Available on-line at: http://www.iapt-taxon.org/nomen/main.php.

    An argument for replacing the names Landoltia punctata and Spirodela punctata with the previous name Spirodela oligorrhiza has been made by Daniel B. Ward (2011). In order to make sure we are referring to the same species, Ward has suggested calling this "Lesser Greater Duckweed" to avoid confusing it with the larger species of Spirodela (S. polyrrhiza & S. intermedia) called "Greater Duckweeds." In this article I will simply call it LG Duckweed instead of Lesser Greater Duckweed. Ward's proposal involves the re-neotypification of G.F.W.Meyer's 1818 type specimen named Lemna punctata which was apparently lost. Ward also proposed as the new type a different species that we know today as Spirodela intermedia.

    • Ward, D.B. 2011. "Spirodela oligorrhiza (Lemnaceae) is the Correct Name for the Lesser Greater Duckweed." J. Bot. Res. Inst. Texas 5 (1): 197-203.

    Ward's LG Duckweed is the species that we have referred to as Spirodela (Landoltia) punctata in current taxonomic literature. If the original name (basionym) Lemna punctata G.F.W. Meyer is re-neotypified by Ward using the native South American species Spirodela intermedia W. Koch (1932), then the names Spirodela punctata G.F.W. Meyer (Thompson) and Landoltia punctata (G.F.W. Meyer) Les & D.J. Crawford will be applied to Spirodela intermedia and not LG Duckweed. The genus Landoltia was based on DNA analysis of Ward's LG Duckweed (see below) and not Spirodela intermedia. Therefore, the earliest correct name for LG Duckweed is Lemna oligorrhiza Kurz (1866) which was transferred to Spirodela oligorrhiza (Kurz) Hegelmaeir (1868). If a separate genus is created for LG Duckweed, Landoltia cannot be used.

    In July 2012, I received an e-mail message from Dr. Thomas Rosatti, editor of the revised Jepson Manual (2nd Edition), asking my opinion on Ward's retypification. Since C.H. Thompson already neotypified this species as Spirodela punctata in 1898, Ward's retypification should really be a "re-neotypification." Since I wrote the section on duckweeds (subfamily Lemnoideae), adopting Ward's re-neotypification would result in changes to several related species. In July 2012, I stated my opposition to Ward's proposal on my on-line Lemnoideae page on Wayne's Word. I also included a two-paragraph e-mail message from Dr. Elias Landolt, Zurich stating his opposition to the proposed re-neotypification (see below). This quotation can be verified on the Internet Archive Wayback Machine dated 8 September 2012.

    Spirodela punctata (Meyer) Thompson was named by C.H. Thompson in 1898 based on a collection from the 1938-1842 Wilkes Expedition, labeled Orange Harbor, Tierra del Fuego. Whether this collection actually came from the tip of South America is debatable. The parenthetical author G.F.W. Meyer described this species earlier as Lemna punctata from a type specimen collected in Guyana, South America in 1818. Unfortunately, Meyer's original type specimen was lost. According to Ward (2011), LG Duckweed does not occur in the areas where these collections were made: The Tierra del Fuego collection was mislabeled and the Guyana collection was not LG Duckweed. Futhermore, he states that the only native Spirodela in South America is S. intermedia. Since Meyer's type specimen was lost, Ward re-neotypified the species as Lemna punctata G.F.W. Meyer and he designated S. intermedia as the type. Thompson's binomial is still Spirodela punctata (Meyer) Thompson; however, this no longer refers to LG Duckweed. It is now the correct binomial for the South American Spirodela intermedia. The correct name for LG Duckweed now becomes Spirodela oligorrhiza (Kurz) Hegelmaier, a name published by Hegelmeier in 1868. Hegelmeier apparently never saw the South American specimens discussed above, so his name is probably based on the true LG Duckweed.

    Ward's 2011 neotypification will make Landoltia a synonym of Spirodela and no longer available for the intended LG Duckweed. The restoration of separate generic status for LG Duckweed now known as Spirodela oligorrhiza (Kurz) Hegelm. will require the creation of a new genus name. The binomial Spirodela punctata (Meyer) Thompson will now refer to the South American species known as Spirodela intermedia W. Koch. By neotypification the name Landoltia becomes a synonym of Spirodela intermedia.

    Quoted E-Mail Message From Dr. Elias Landolt

    According to E. Landolt (Personal Communication, 2012), the name change proposed by Ward is untenable. This quotation can be verified on the Internet Archive Wayback Machine dated 8 September 2012.

      "I think this problem cannot be solved definitely. The main problem is the fact that it is not possible to decide which species Meyer was describing under the name of Lemna punctata. Certainly, it has to be a species of the genus Spirodela sensu lato because we don't know any other species within the Lemnoideae with pigment cells ("punctata"). The description of Meyer is very rudimentary. I could not find any herbarium specimen collected by Meyer. His description could concern Spirodela oligorrhiza, Spirodela intermedia or Spirodela polyrrhiza. I collected all of these species in northern South America. The description fits best for Spirodela oligorrhiza because it mentions 2-to 3 roots per frond. Most individuals of S. oligorrhiza in nature have 2 to 5 roots. S. polyrrhiza and S. intermedia mostly have more than 8 roots (up to 18). Only very rarely and only in very young fronds they show less then 5 roots. L. punctata was collected by Meyer in Guyana. On the other side, S. intermedia is known from the neighbouring state Surinam and surely is indigenous in the region. S. polyrrhiza and S. punctata might be introduced to South America. Today, S. punctata is frequent in the regions of Rio and Sao Paulo, in Venezuela, Colombia and Ecuador. I have collected S. polyrrhiza in Colombia and Ecuador. Even if S. punctata is introduced into South America it is not known at which year the introduction took place for the first time. It looks like S. punctata would be easily distributed by ship from harbour to harbour and from there by bird to places within a continent."

      "I can understand that Thompson choose a new type for Lemna punctata. The correctness of his decision is not disputed. I checked the neotype the collection of Wilkes from copies in four different Herbara. It is clearly the species which is now called "punctata". It is not important if the material was collected in Orange Harbor or somewhere else. Because it is not possible and will probably never be possible to decide the identity of Lemna punctata with certainity it is not advisable to change the correctly published neotype of Thompson. If we change the type of L. punctata again we will have a terrible chaos in nomenclature. Therefore I am not following the proposal of Ward."

    If atp is not present, the calvin cycle will shut down.

    A. Landoltia punctata (Spirodela punctata = S. oligorrhiza); B. Lemna minuta. The upper surface of Landoltia punctata is clearly punctate (appearing pitted). In dead fronds these punctae show up as brown pigment cells composed of oxidized & polymerized quinones similar to brown, oxidized phenolic componds in sliced apples and potatoes. Duckweeds with 2-3 (5) roots and a punctate dorsal surface are undoubtedly Landoltia punctata. The punctate surface is undoubtedly why G.F.W. Meyer originally named this species Lemna punctata about 200 years ago.

    If atp is not present, the calvin cycle will shut down.

    Dorsal view of dried herbarium specimen of Landoltia punctata showing brown pigment cells (punctae) in subepidermal layer of plant body (frond). The image was taken through an Olympus compond microscope with a Sony W-300 digital camera. Pigment cells occur in the plant bodies of other species of Spirodela. They are also in some species of Wolffia and Wolffiella, but not in Lemna. In fact, the punctate species Wolffia brasiliensis (formerly W. punctata) was originally named after these pigment cells or punctae. Wolffia punctata has also been used for W. borealis, but the correct synonym is W. brasiliensis. Magnification 100x and 400x.

    If atp is not present, the calvin cycle will shut down.

    South American Spirodela intermedia (inset) superficially resembles S. polyrrhiza in size, shape and number of roots; however, it does not produce overwintering turions. In fact, it does not occur in the cold northern latitudes. In addition, 2-5 roots perforate the ventral lobe of basal prophyllum compared with only 1-2 roots penetrating the prophyllum in S. polyrrhiza. Because of their larger size, Spirodela species are sometimes referred to as "greater duckweeds." Landoltia punctata is smaller, and in my opinion, more conspicuously punctate. Inset from E. Landolt (1986): The Family Lemnaceae - A Monographic Study. Vol 1. Veroff. Geob. Inst. ETH, Zurich 71: 1-566.

    My objection to Ward's proposed neotypification is based on two primary points. (1) He is re-neotypifying Meyer's lost type specimen with the name Lemna punctata; however, he is using Spirodela intermedia as the type. It is impossible to know with 100% certainty which species Meyer was describing under the name Lemna punctata back in 1818. It could have been the "LG Duckweed" that we know as Landoltia punctata (Spirodela punctata = Spirodela oligorrhiza), or it could have been another species of Spirodela such as S. intermedia. Why complicate this taxonomy based on speculation. (2) Cladistical analysis has clearly shown that Spirodela punctata belongs in a separate genus (Landoltia), otherwise the grouping of Spirodela with 3 species is paraphyletic. The trend in modern floras such as the Jepson Manual Second Edition (2012) is for consistent monophyletic groupings.

    A Review Of Ward's Proposed Re-Neotypification

    Ward's re-neotypification of Lemna punctata has been reviewed by J.H. Wiersema of the USDA Agricultural Research Service, National Germplasm Resources Laboratory, Beltsville, Maryland.:

    • Wiersema, J. H. (2014), Application of the name Lemna punctata G. Mey., the type of Landoltia Les & D. J. Crawford. Plant Biology. doi: 10.1111/plb.12209.
    Here are Dr. Wiersema's conclusions: "The re-neotypification of Lemna punctata G. Mey. by Ward (2011) is to be rejected on the grounds that it has neither been established unequivocally that the previously selected neotype differs taxonomically from the original concept of Meyer, nor that this neotype is in serious conflict with Meyer's protologue. S. punctata and Landoltia punctata, both based on Lemna punctata, remain the correct names in Spirodela or Landoltia for the widespread species sometimes known as S. oligorrhiza and the name S. intermedia remains correct for a related neotropical species."

      See Another Taxonomic Controversy Regarding Incorrect Type Specimens  

    6. An Updated Key To The Duckweed Family

    The following indented dichotomous key separates the duckweed family into five distinct genera:

    A Key To The Genera Of Lemnaceae

     1a. Plant body with 1 - several roots.
              2a. Root one.....................................................................Lemna           2b. Roots 2 - 12.

                    3a. Roots 7 - 12 (or more); plant 10 mm long.........Spirodela


                    3b. Roots 2 - 3 (up to 5); plant 3 - 6 mm long..........Landoltia  1b. Plant body without roots.

              4a. Plant body flattened; 3 - 10 mm long.......................Wolffiella


              4b. Plant body globose-ovoid; 0.6 - 1.2 mm long.........Wolffia

    Depending on the genus, daughter plants are produced vegetatively in 2 lateral, flattened, budding pouches (Spirodela, Landoltia & Lemna), a flattened, triangular budding pouch at the basal end (Wolffiella), or a funnel-shaped budding pouch at the basal end (Wolffia). Each plant produces up to a dozen daughter plants during its lifetime of 1-2 (or more) months. The daughter plants repeat the budding history of their clonal parents, resulting in exponential growth. It has been estimated that the Indian Wolffia microscopica (Griff.) Kurz may reproduce by budding every 30 hours under optimal growing conditions. At the end of 4 months this would result in about 1 nonillion plants (1 followed by 30 zeros) occupying a total volume roughly equivalent to the planet earth. This astronomical vegetative growth and the ability of some species to grow in stagnant, polluted water is why some duckweeds are well suited for water reclamation. Some species not only thrive on manure-rich water, but can be fed back to livestock, thus completing the recycling process. In addition, some species (such as Wolffia) are a potential source of food for humans because they contain about 40 percent protein (dry weight) and are equivalent to soybeans in their amino acid content (with high levels of all essential amino acids except methionine).

    Although flowers are rarely observed in some species, all duckweeds bloom and reproduce sexually; however, some populations in small ponds may be clones of each other and not able to produce viable seeds. Since the flowers are typically protogynous with the stigma receptive before the anther is mature, the plants must be cross pollinated by genetically different individuals with mature pollen-bearing anthers in synchronization with the receptive stigmas. During the summer months, 2 stamens (androecium) and one pistil (gynoecium), all enclosed in a membranous saclike spathe, appear within budding pouches at the edge of the plant body in Spirodela, Landoltia and Lemna. In Wolffiella and Wolffia, a minute floral cavity develops on the upper side of the plant body containing a single stamen and pistil (not enclosed by a spathe). The tiny bisexual flowers have no sepals or petals, and are barely discernible without magnification. Because of the sweet (sugary) stigmatic secretions and spiny pollen grains (covered with minute protuberances), there is evidence that certain species may be pollinated by insects. In fact, Lemnaceae pollen has been detected on flies, aphids, mites, small spiders, and honey bees on the surface of dense duckweed layers. With floral sex organs projecting from the surface or lateral budding pouches, many duckweed species may be contact-pollinated as flowering individuals bump together or become piled up in windrows along the edges of ponds and lakes.

    7. Identification Of Morphologically Similar Species

    Lemna minuta vs. L. valdiviana

    Since flowers and fruits are rarely observed, most taxonomic keys to the Lemnaceae are based on relatively few diagnostic vegetative characteristics that may vary under different environmental conditions. This often makes precise identification of some species difficult, or in some cases, practically impossible. All North American species have been separated by their flavonoid spot patterns using two-dimensional paper chromatography [see McClure & Alston (1966), Amer. J. Bot. 53: 849-860]. It should be noted that flavonoid chemistry is not always reliable for taxon distinction because chromatographic patterns may be influenced by environmental factors [see Ball, Beal & Flecker (1967), Brittonia 19: 273-279]. In addition, R. Scogin of RSA and J.L. Platt of OSU studied two-dimensional chromatography on clonal populations of Lemna minuta Kunth from San Diego County and came up with patterns identical with McClure & Alston's L. valdiviana Phil. According to Landolt (1987), the original clones of L. valdiviana studied by McClure & Alston may have actually been L. minuta. During the past century, the taxonomy of L. minuta Kunth has been complicated by different names used by different authors. Several of the synonyms commonly found in the literature include L. valdiviana var. minima Hegelm., L. minima Phil. ex Hegelm. and L. minuscula Herter. James L. Reveal (Taxon 19: 328-329, 1990) neotypified the oldest name L. minuta Kunth and cleared up some of the confusion and controversy about this widespread species.

    If atp is not present, the calvin cycle will shut down.
    If atp is not present, the calvin cycle will shut down.

    The plant bodies (fronds) of Lemna valdiviana are often connected in clusters of four to seven, and the nerve ("vein") typically extends 3/4 of the distance from the node (point of root attachment) to the apex. The closely related L. minuta has one faint nerve that only extends about 1/2 the distance from the node to the apex. When growing in full sunlight, plant bodies of L. minuta are often only 2 mm long and are connected clusters of two. One of the most difficult duckweeds to identify in the field is the growth form of Lemna minuta found in shady habitats. The plant bodies are often connected in clonal clusters of four and are slightly longer than typical L. minuta growing in full sunlight. The shade form of L. minuta can be separated from L. valdiviana by the extent of the nerve. The obscure nerve of L. minuta only extends about 1/2 the distance from the node to apex.

    Veins (Nerves) and Air Spaces

    If atp is not present, the calvin cycle will shut down.

    Dorsal view of Lemna validiviana with backlighting, showing extent of nerve in relation to node (point of root attachment) and apex of plant body. The single nerve extends beyond the midpoint to about 3/4 of the distance between the node and apex. The nerve clearly extends beyond the region of air spaces (aerenchyma tissue). These characteristics rule out L. minuta, at least the typical form that grows in full sunlight. In L. minuta, the nerve rarely extends beyond the aerenchyma tissue and only extends about half the distance from the node to apex. These may seem like relatively minor morphological differences, but DNA sequencing studies clearly separate these two closely-related species.

    If atp is not present, the calvin cycle will shut down.

    General shape and extent of nerve in Lemna valdiviana compared with L. minuta. Plants of L. valdiviana are connected in clonal clusters of four to seven, while in L. minuta the plants are typically connected in two's. Each daughter plant is connected by a short stalk (stipe).

    Note: Sometimes placing difficult species in an observation dish and examining them over several days can be helpful. Digital images can also bring out subtle differences. The following duckweeds were photographed through a dissecting microscope using a Sony digital camera with backlighting:

    If atp is not present, the calvin cycle will shut down.

    Three duckweeds from Pinnacles National Monument in central California. A. Lemna minor: Three veins arising from point of root attachment (n), without dorsal row of papules and reddish anthocyanin on ventral side (as in L. turionifera) and without winged root sheath (as in L. aequinoctialis). B. Lemna valdiviana: One faint vein extending more than 3/4 distance from root node (n) to apex (red arrow), plant body very thin and transparent throughout and floating on or just below water surface (slipping under plant bodies of L. minor and L. minuta in an observation dish). C. Lemna minuta: One vein extending less than 2/3 distance from root node (n) to apex, vein not extending beyond region of larger air spaces (red arrow), plant body slightly thicker in middle (not as uniformly thin and transparent as L. valdiviana), small size (only 1-2 mm long) or larger when growing in shade, floating on water surface (not submersed as in L.valdiviana). Photo taken with substage illumination.

    If atp is not present, the calvin cycle will shut down.

    Ventral view of Lemna valdiviana showing a single vein that extends 3/4 of the distance between the node (point of root attachment) and apex of the plant body. According to Landolt, this is one of the most reliable characteristics to separate it from L. minuta because of the variability of these two species under different growing conditions. This specimen was placed on a microscope slide with cover slip and photographed through a Bausch & Lomb microscope with a Sony W-300. The aerenchyma tissue shows up better when all the water under the cover slip has allowed to dry. The image was inverted to a "negative" with PhotoShop to show the extent of the vein.

    Using Dorsal Row Of Papules To Separate Lemna turionifera From L. minor

    Another difficult group of duckweeds is Lemna turionifera and L. minor. L. turionifera has three main veins and is superficially similar to L. minor and nongibbous L. gibba. It differs from L. minor and L. gibba in having a row of 3-7 minute papules along the midline of the dorsal surface. It also differs from L. minor by developing reddish anthocyanin on its underside, starting in the region around the root. What really sets this species apart from other duckweeds is the presence of rootless, overwintering turions in the fall months. These are referred to as "winter buds" in the Jepson Manual of California Plants (1996). L. turionifera appears to be more common than L. minor in San Diego County. It generally replaces L. gibba in the higher elevations. Unfortunately, reddish anthocyanin and turions are not always present, so you must rely on the row of papules along the midline of dorsal surface. This can be difficult to see, especially on dried herbarium specimens. Ideally, herbarium specimens should include field notes on the presence of a dorsal row of papules and reddish anthocyanin on the ventral surface. With some practice, these traits can be observed with a hand lens.

    If atp is not present, the calvin cycle will shut down.

    If atp is not present, the calvin cycle will shut down.

    Left: Ventral view of Lemna turionifera showing blotches of reddish anthocyanin, especially in the root region. L. minor is typically not suffused with red anthocyanin. Nongibbous L. gibba generally lacks the dorsal row of papules and often develops anthocyanin on its upper side. Right: Dorsal view of L. turionifera showing midline row of minute papules. L. minor typically does not have a distinct row of papules, although it may have minute apical and/or nodal papules.

    If atp is not present, the calvin cycle will shut down.

    A. Lemna turionifera from Moose Lake, Minnesota. The plant body has a distinct midline row of dorsal papules and is suffused with reddish anthocyanin. B. Lemna minor (apparently) from Clearwater Lake. It does not have midline row of dorsal papules and does not have reddish anthocyanin. Some plants identified as L. minor had a minute apical papule.

    • Landolt, E. 1975. "Morphological Differentiation and Geographical Distribution of the Lemna gibba-Lemna minor Group." Aquatic Botany 1: 345-363.

    If atp is not present, the calvin cycle will shut down.

    Approximate view of Lemna turionifera through a 20x hand lens. Without turions and reddish anthocyanin on the underside, it is difficult to distinguish this species from L. minor. In fact, they were once referred to as L. minor I and L. minor II, respectively, by Landolt. Both species are common in western North America, although L. turionifera may be more common, particularly in colder regions. This view shows the characterisitic midline row of minute papules on the upper (dorsal) surface. L. minor typically has a smooth surface without multiple papules arranged in a row. The papules are fairly distinct on fresh samples, but dried specimens should be hydrated. The term "bump" rather than papule in the Jepson Manual is unfortunate.

    8. Importance Of Backlighting For Duckweed Identification

    When identifying duckweed species (especially Lemna, Landoltia and Spirodela), it is very important to view the plant bodies with backlighting (substage illumination) in order to see the number and the extent of the nerves. With a good 10x hand lens this can be accomplished by holding the plant body up against the bright sky. Backlighting is also crucial in order to see the tract of elongated cells (costa) in the budding pouch of Wolffiella. The position of the costa within the triangular budding pouch is very important in order to distinguish between W. lingulata and W. oblonga.

    If atp is not present, the calvin cycle will shut down.

    Illustration of Wolffiella lingulata compared with W. oblonga. With backlighting the shape of the budding pouch and relative position of the costa can be observed. In W. lingulata the budding pouch angle is 80 to 120 degrees, with the costa situated between the middle and edge of the lower wall of the pouch. In W. oblonga the budding pouch angle is 40 to 70 degrees, with the costa situated along the edge of the lower wall of the pouch. Without backlighting under a microscope or good quality hand lens, it is virtually impossible to see these characteristics. Illustration modified from photos by W.P. Armstrong. 1993. Lemnaceae. In The Jepson Manual of Higher Plants of California, J.M. Hickman, Editor. University of California Press, Berkeley, California.

    If atp is not present, the calvin cycle will shut down.

    Dorsal views of Lemna turionifera. The left image has illumination from above and below. The right image has only substage illumination. To observe the number and position of nerves, it is best to use substage illumination only. The lateral dark bodies at the base of the mother plant are overwintering starch-filled bodies called turions. Because the specific gravity of starch is about 1.5, the turions sink to the bottom of quiet streams and ponds during the fall where they survive the freezing winter months. In the spring when the temperatures are once again suitable for growth, the turions produce bubbles of carbon dioxide and rise to the surface. They give rise to daughter plants by budding, and soon clonal colonies of this remarkable duckweed once again cover the water surface. Without turions, it is sometimes difficult to distinguish this species from the closey related L. minor. The dorsal surface of L. turionifera has a row of minute papules along the midline which are absent in L. minor. In addition, blotches of reddish anthocyanin sometimes develop on the ventral surface of L. turionifera which are absent from the underside of L. minor. In L. turionifera, the greatest (widest) distance between the 2 lateral veins is near the middle or above (distal). In the above image it is so close to the midpoint that this chararacteristic is not that useful.

    If atp is not present, the calvin cycle will shut down.

    Transparent view of Lemna minor from Clearwater Lake, Minnesota. Another characteristic used to separate Lemna minor from L. turionifera is the relative position of greatest distance between the lateral veins (inner lateral veins): In L. minor the widest point is near the middle of the veins or below (proximal). In L. turionifera it is near the middle or above (distal). Since the widest distance can be near the middle in both species, this trait is not always that useful.

    Images of Lemna turionifera
    See Image of Lemna minor

    In these times of high technology, as botanical research moves toward a molecular emphasis, it is very important to have specimens verified by a taxonomist. It is also imperative to have carefully prepared voucher specimens on file in a nationally recognized herbarium. Modern molecular techniques, such as DNA sequencing, may lead to a better understanding of these fascinating species.

    9. Photoperiodism In The Duckweed Family

    Although some duckweed species superficially resemble each other, they may have significantly different biochemical patterns, such as an entirely different photoperiodism in response to day length (hours of darkness). During the hours of daylight the protein leaf pigment called phytochrome 730 (P-730) is formed. During the hours of darkness P-730 is slowly converted into phytochrome 660 (P-660). In short-day plants P-730 inhibits flowering. Short-day plants typically need about 15 hours of darkness to convert all the P-730 present at sundown into P-660. In these plants, P-660 stimulates the release of the essential flower stimulant "florigen" which induces flowering. The P-660 pigment is very sensitive to specific wavelengths of light, and a flash of light during the 15 hours of darkness can instantaneously convert all the P-660 back into P-730. Lemna aequinoctialis is clearly a short-day plant because it requires 16 hours of darkness (8 hours of light) to flower. The closely related L. perpusilla is also a short-day species that exhibits maximum flowering with 13-18 hours of darkness, and no flowering with 9 hours of darkness (15 hours of light). These species will generally not bloom during the longest days of summer or in a pond next to a bright street light.

    Long-day plants require 15 hours of daylight and 9 hours of darkness in order to flower. In these plants P-730 stimulates the release of florigen and subsequent flowering. If the nights are long enough to convert all the P-730 into P-660, no florigen will be released and flowering will not occur. Lemna gibba is a long day plant that flowers with 9 hours of darkness. This species typically flowers during the longest days of summer. It will generally not flower with 12 hours of darkness, such as at the equator or during the vernal equinox, because the nights are too long. The physiology of these long-day and short-day species of duckweeds can definitely affect their range and potential for flowering and seed production.

    Exactly how some duckweed species are dispersed and how they survive intermittent streams and ponds that dry up during summer is an enigma. Being carried from pond to pond on the feet of water fowl (tucked neatly under the ducks' bodies during flight), probably explains the distribution of some species. In the southeastern United States there are records of wolffia plant bodies being carried by a tornado, and they have even been reported in the water of melted hailstones! Some species have been carried by rivers and streams, and in the shipment of fish and aquarium cultures. Professor Dr. Elias Landolt (1997) discusses some of the ways duckweeds survive dry conditions (Bulletin of the Geobotanical Institute ETH, Stiftung Rubel 63). Seeds of all Lemnaceae investigated so far tolerate drying for at least a few months to several years; however, seeds are rarely produced by clonal populations of some species. Although vegetative plant bodies are unable to withstand desiccation for more than a few hours, they may survive days (or weeks) embedded in wet mud and debris. According to Dan Richards (The Distributional Ecology Of Duckweeds (Lemnaceae) In Local Populations Of Northern California, MA Thesis, Humboldt State University, 1989), vegetative plants of two species survived up to six hours of desiccation (out of water). The two species tested by Richards (1989), Lemna minor and Landoltia punctata, had a much higher survival percentage when they were in large clumps compared to individually dried plants. Richard's experiments clearly show that these species could easily be carried short distances by migratory water fowl. Species that do not readily form seeds can also survive weeks or months of drought as turions, especially if the turions are imbedded in mud, silt and debris. This is especially true of the minute turions of Wolffia species. According to Landolt (1997), the South African Wolffia cylindracea may survive seasonally dry ponds for at least 16 months if the minute turions are firmly imbedded in clayey soil.

    10. Axenic Culture Of Duckweeds In Nutrient Agar

    The following methods are summarized from E. Landolt and R. Kandeler (1987): "The Family
    of Lemnaceae: A Monographic Study (Volume 2)." Veroff. Geobot. Inst. ETH 95: 1-638.

    Species of Lemnaceae can be grown aseptically in nutrient agar similar to the methods used in plant tissue culture. The transfer techniques are similar to bacterial cultures using a flamed inoculation loop. The plants must first be cleansed (sterilized) before transfer to the sterile agar. Plants connected in clonal clusters should be separated from each other. Individual plants should be dipped in a 0.5% solution of sodium hypochlorite (10% Clorox® or Purex® solution) for at least one minute, washed in aseptic distilled water, and then transferred to an aseptic nutrient solution containing 1% sucrose (see recipe for Hutner's solution below). Contamination by fungi will show up in this dilute sugar solution within several days. If all the plants die, or if the solution becomes cloudy or covered by fungi, the treatment must be performed again. Plants that survive may be transferred to another aseptic nutrient solution containing 1% sucrose, 0.5% casein amino acids and 0.004% yeast extract. This solution will reveal contaminations at once. According to Landolt (1987), about 1-10% of the plants normally succeed in staying alive and become aseptic. Some species (such as Wolffiella) may need more attempts than others. Plants that survive this sterilization technique (and are not contaminated or infected by fungal molds) can be transferred to an aseptic nutrient agar in test tubes or Petri dishes. One of the best nutrient solutions for preparing the agar is 20% Hutner's solution (see table below). The mineral components of Hutner's solution are similar to some commercial plant tissue culture media. J.W. McClure ("Taxonomic Significance of the Flavonoid Chemistry and the Morphology of Lemnaceae in Axenic Culture," Ph.D. Dissertation, University of Texas, 1964) maintained stock cultures of Lemnaceae clones in a 33% Hutner's solution fortified with 1% sucrose and 1.25% "Bacto-Agar" (Difco Laboratories) per 100 ml of medium.

    Recipe For 20% Hutner's Nutrient Medium:

    Mineral Nutrient Mg per Liter
    NH4NO3 40
    K2HPO4 80
    Ca(NO3)2 40
    MgSO4 100
    FeSO4 5
    MnSO4 3
    ZnSO4 13
    H3BO3 3
    Na2MoO4 5
    CuSO4 0.8
    CoSO4 0.2
    EDTA 100

    For More Information See The Charms Of Duckweed by Dr. John Cross

    11. Control of Duckweed Blooms In Ponds and Reservoirs

    One of the most common questions received at this site is how to control population explosions or "blooms" of duckweeds in which ponds, lakes and reservoirs become covered with a thick green layer of Lemna, Spirodela, Landoltia and Wolffia. Lemnaceae blooms typically occur in waters rich in nutrients, especially phosphorus and/or nitrogen. The nutrients originate from pollution from excessive use of fertilizers or possibly by an imbalance in the populations of fish or water fowl resulting in excessive nitrogenous waste products in the water. The recirculation of nitrogen and phosphorus from the cycle of growth and decomposition of duckweeds may also contribute to the high levels of these elements. Destroying the duckweed layer with herbicides does not solve the problem of excess nutrients in the water. In addition, the chemical herbicides may be toxic to the animal life, either directly or through biological magnification. Because of the exponential growth rate of Lemnaceae, herbicides must be used repeatedly (perhaps several times a year). Ideally, it is best to eliminate the influx of concentrated nitrates and phosphates into the water and avoid the use of concentrated fertilizers.

    The manual or mechanical removal of the duckweed cover can also remove a lot of the nitrogen and phosphorus nutrients. The duckweed mats can be composted and used as "green manure." They can also be fed to livestock, rabbits, poultry and fish. It has been estimated that 10 acres of duckweeds could theoretically supply 60 percent of the nutritional needs of 100 dairy cows, the manure of which could be recycled to provide fertilizer for the thriving duckweeds. According to R.M. Harvey and J.L. Fox, 1973 ("Nutrient Removal Using Lemna minor," J. Water Poll. Control Fed. 45: 1928-1938), one hectare of water area is sufficient to raise 4000-7000 chickens and ducks during a vegetation period. And according to E. Rejmankova, 1981. ("On The Production Ecology of Duckweeds," Intern. Workshop on Aquatic Macrophytes, Illmitz, Austria), one hectare of Lemnaceae cover is sufficient to produce protein for 480 ducks during the warm season. The utilization of duckweeds as food for animals is summarized by E. Landolt and R. Kandeler, pages 382-389 in Veroff. Geobot. Inst. ETH, Stiftung Rubel 95 "The Family of Lemnaceae: A Monographic Study" Vol. 2, 1987. An extensive bibliography of Lemnaceae is also given on pages 414-580. The following 3 classic papers discuss duckweed use in aquaculture:

    1. Culley, D.D., Jr. et al. 1981. "Production, Chemical Quality and Use of Duckweeds (Lemnaceae) in Aquaculture, Waste Management, and Animal Feeds." J. World Maricult. Soc. 12 (2): 27-49.

    2. Hillman, W.S. and D.D. Culley, Jr. 1978. "The Uses of Duckweed." American Scientist 66: 442-451.

    3. Rusoff, L.L., E.W. Blakeney and D.D. Culley, Jr. 1980. "Duckweeds (Lemnaceae): A Potential Source of Protein and Amino Acids." J. Agricult. Food Chem. 28: 848-850.

    Stopping the inflow of nutrients and the repetitive removal of the duckweed layer will greatly reduce the growth of duckweeds. Since water fowl and most fish feed on the duckweeds, they can help control the exponential population growth of these plants. In addition, Lemnaceae have a positive effect in eutrophic water because they remove ammonia which is toxic to fish in high concentrations.

    In general, Lemnaceae are very sensitive to herbicides. In fact, duckweeds are often used to test the toxicity of herbicides and to detect the presence of herbicides in water. According to Professor Dr. E. Landolt (pages 161-170 in Veroff. Geobot. Inst. ETH, Stiftung Rubel 95 "The Family of Lemnaceae: A Monographic Study" Vol. 2, 1987), heterocyclic compounds (e.g. 6-methylpurin), urea derivatives, and quaternary ammonium compounds (e.g. diquat and paraquat) are the most toxic substances for Lemnaceae. Some algicides, including PH 40:62 are extremely toxic to some species of Lemna. Some of these products are available from agricultural supply companies depending on federal, state or local regulations. They should be used with extreme caution and under very careful supervision. It would be advisable to consult with your city or county weed/mosquito abatement department before attempting any large herbicidal control project.

    Biological control using ducks, fish, turtles and crustaceans (water shrimp, crayfish, ostracods, freshwater prawns, daphnia, amphipods, etc.) may also help to control duckweed populations. There are a number of species of freshwater fish that eat duckweeds to supplement their diets, including grass carp (Ctenopharyngodon idella), channel catfish (Ictalurus punctatus), common carp (Cyprinus carpio), common mullet (Mugil cephalis), goldfish (Carassius auratus), and Tilapia (Sarotherodon), including S. mossambicus, S. hornorum, and S. nilotica. Duckweeds are also eaten by Pacu (Colossoma bidens), a freshwater fish native to the Amazon River. Some of these fish species may be available through aquafarm distributors or local county and state agencies. One aquaculture company in southern California was raising tilapia for local seafood restaurants.

    More Information About Duckweeds For Wastewater Treatment:

    LEMNA Corporation 1408 Northland Drive Suite 310 St. Paul, Minnesota 55120, USA Phone: (612) 688-0836

    FAX: (612) 688-8813

    12. The WAYNE'S WORD® Copyright Policy

    All photo images & illustrations are copyright protected by encrypted watermarks and/or archival original 35 mm color transparencies. The name Wayne's Word and hippo logo are registered with the U.S. Patent & Trademark Office.

    We have received hundreds of requests from various organizations, agencies and individuals to use photos and information from Wayne's Word on their web sites and in published newsletters, compact discs, books, etc. All the articles, photos and illustrations in Wayne's Word are copyright protected and may not be used in other on-line, CD or printed publications without our expressed written permission. This includes the display of our images and illustrations on other web sites. For anyone interested in this material, you may place hyperlinks (but no frames) to anchor tags on our pages from your web sites.

    Send An E-Mail Message To Professor Armstrong:

    If atp is not present, the calvin cycle will shut down.

    Due To The Overwhelming Number Of Messages Sent To WAYNE'S WORD
    (And Due To A Staff Of Only One Human), Replies May Not Be Forthcoming.

     Page Views & Awards     Bibliography     Biography     See Wayne On Wikipedia   

    If atp is not present, the calvin cycle will shut down.

    Go To Publication Update For This Site

    Click Counter Box To See Number Of Hits For This Web Site:  

    All text material & images on these pages copyright © W.P. Armstrong


Page 3

If atp is not present, the calvin cycle will shut down.

Keys To This Genus

Plant bodies minute and rootless, with granular or mealy texture when rubbed between fingers of hands; generally globoid to ovoid-ellipsoid or cylindrical (flat-topped in some species); 0.4-1.3 mm long and 0.2-1.0 mm wide, floating on or partially below water surface; veins 0; pale transparent green throughout or with dark green dorsal surface; some species punctate with brown pigment cells in epidermis (visible on dead plants of W. borealis & W. brasiliensis); solitary or with smaller daughter plant attached at basal end; single, funnel-shaped budding pouch at basal end; daughter plants produced in basal budding pouch (in most species, some daughter plants may sink to bottom and function as overwintering turions); parenchyma without druse or raphide crystals of calcium oxalate; one bisexual flower produced inside dorsal floral cavity, consisting of a single pistil and single stamen (some authorities consider this to be an inflorescence with 2 unisexual flowers); pistil situated nearest the basal budding pouch; anther unilocular and apically dehiscent along pigmented line; ovary unilocular with one orthotropous ovule; utricle globose and slightly compressed, bearing 1 globose-ovoid, smooth seed with distinct conical operculum (seed may be slightly reticulate but not longitudinally ribbed); size and shape of plant body important for species identification (ideally under 10-20X magnification); at least 9 spp. worldwide, especially warm temperate and tropical regions; J.F. Wolff, German botanist and physician, 1778-1806; Armstrong, W.P. & R.F. Thorne (1984), Madrono 31: 172-179; Armstrong, W.P. (1989), Madrono 36: 283-285; Armstrong, W.P. (1985), Fremontia 13: 11-14.

From here you can access:

  • Keys to this genus

  • Images of some species of Wolffia

All text material & images on these pages copyright © W.P. Armstrong


Page 4

If atp is not present, the calvin cycle will shut down.
Images of Lemnaceae in Western North America

Lemna - Spirodela - Landoltia - Wolffia - Wolffiella - General

  • Spirodela polyrrhiza -                            
  • Landoltia punctata -

All text material & images on these pages copyright © W.P. Armstrong