Give the composition of composite resin materials and their application in the restoration of teeth

1. Jang J.-H., Park S.-H., Hwang I.-N. Polymerization shrinkage and dept of cure of bulk-fill resin composites and highly filled flowable resin. Oper Dent. 2015;40(2):172–180. doi: 10.2341/13-307-L. pMID: 25136904. [PubMed] [CrossRef] [Google Scholar]

2. Lohbauer U. Dental glass ionomer cements as permanent filling materials? Properties, limitations and future trends. Materials. 2010;3(1):76–96. doi: 10.3390/ma3010076. [CrossRef] [Google Scholar]

3. L ¨uhrs A.-K., Geurtsen W. Biosilica in evolution, morphogenesis, and nanobiotechnology. Springer; 2009. The application of silicon and silicates in dentistry: a review; pp. 359–380. [PubMed] [Google Scholar]

4. Jandt K.D., Sigusch B.W. Future perspectives of resin-based dental materials. Dent Mater. 2009;25(8):1001–1006. [PubMed] [Google Scholar]

5. Chan K.H., Mai Y., Kim H., Tong K.C., Ng D., Hsiao J.C. Review: Resin composite filling. Materials. 2010;3(2):1228–1243. doi: 10.3390/ma3021228. [CrossRef] [Google Scholar]

6. Marovic D., Tarle Z., Hiller K.A., ¨uller R.M., Rosentritt M., Skrtic D., et al. Reinforcement of experimental composite materials based on amorphous calcium phosphate with inert fillers. Dent Mater. 2014;30(9):1052–1060. doi: 10.1016/j.dental.2014.06.001. [PubMed] [CrossRef] [Google Scholar]

7. Zhang K., Zhang N., Weir M.D., Reynolds M.A., Bai Y., Xu H.H. Bioactive dental composites and bonding agents having remineralizing and antibacterial characteristics. Dent Clin North Am. 2017;61(4):669–687. [PMC free article] [PubMed] [Google Scholar]

8. Fink, Acrylic Dental Fillers, Reactive Polymers Fundamentals and Applications (2013) 453–474. doi:10.1016/B978-1-4557-3149-7.00019-X.

9. Franco A.P.G., Karam L.Z., Galv ~ao J.R., Kalinowski H.J. Evaluation of shrinkage polymerization and temperature of different acrylic resins used to splinting transfer copings in indirect impression technique. 24th International Conference on Optical Fibre Sensors, Vol. 9634. 2015 p. 96347R. [Google Scholar]

10. Barszczewska-Rybarek I., Jurczyk S. Comparative study of structure-property relationships in polymer networks based on Bis-GMA, TEGDMA and various urethane-dimethacrylates. Materials. 2015;8:1230–1248. doi: 10.3390/ma8031230. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

11. Luo S., Zhu W., Liu F., He J. Preparation of a Bis-GMA-Free dental resin system with synthesized fluorinated dimethacrylate monomers. Int J Mol Sci. 2016;17(12) doi: 10.3390/ijms17122014. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

12. Jalal N., Surendranath A.R., Pathak J.L., Yu S., Chung C.Y. Bisphenol a (bpa) the mighty and the mutagenic. Toxicol Rep. 2018;5:76–84. doi: 10.1016/j.toxrep.2017.12.013. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

13. Chen L., Suh B.I. Bisphenol a in dental materials: a review. JSM Dentistry. 2013;(1):1–5. [Google Scholar]

14. Kim W.B., Joshi U.A., Lee J.S. Making polycarbonates without employing phosgene: an overview on catalytic chemistry of intermediate and precursor syntheses for polycarbonate. Ind Eng Chem Res. 2004;43(9):1897–1914. doi: 10.1021/ie034004z. [CrossRef] [Google Scholar]

15. Kalachandra S., Kusy R. Comparison of water sorption by methacrylate and dimethacrylate monomers and their corresponding polymers. Polymer. 1991;32(13):2428–2434. doi: 10.1016/0032-3861(91)90085-W. [CrossRef] [Google Scholar]

16. Cook W.D. Thermal aspects of the kinetics of dimethacrylate photopolymerization. Polymer. 1992;33(10):2152–2161. doi: 10.1016/0032-3861(92)90882-W. [CrossRef] [Google Scholar]

17. Gajewski V.E., Pfeifer C.S., Fr ´oes-Salgado N.R., Boaro L.C., Braga R.R. Monomers used in resin composites: Degree of conversion, mechanical properties and water sorption/solubility. Braz Dent J. 2012;23(5):508–514. doi: 10.1590/S010364402012000500007. [PubMed] [CrossRef] [Google Scholar]

18. Peutzfeldt A. Resin composites in dentistry: the monomer systems. Eur J Oral Sci. 1997;105(2):97–116. [PubMed] [Google Scholar]

19. Sideridou I., Tserki V., Papanastasiou G. Effect of chemical structure on degree of conversion in light-cured dimethacrylate-based dental resins. Biomaterials. 2002;23(8):1819–1829. doi: 10.1016/S0142-9612(01)00308-8. [PubMed] [CrossRef] [Google Scholar]

20. Kumar S.R., Patnaik A., Bhat I. Physical and thermo-mechanical characterizations of resin-based dental composite reinforced with silane-modified nanoalumina filler particle. Proc Inst Mech Eng Part L J Mater Des Appl. 2016;230(2):504–514. doi: 10.1177/1464420715581004. arXiv:https://doi.org/10.1177/1464420715581004. [CrossRef] [Google Scholar]

21. Barszczewska-Rybarek I., Jurczyk S. Comparative study of structure-property relationships in polymer networks based on bis-gma, tegdma and various urethane-dimethacrylates. Materials. 2015;8(3):1230–1248. doi: 10.3390/ma8031230. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

22. Karimzadeh A., Ayatollahi M.R., Bushroa A.R. Effect of dental restorative material type and shade oncharacteristics of two-layer dental composite systems. Lat Am J Solids Struct. 2016;13(10):1851–1865. doi: 10.1590/1679-78252562. [CrossRef] [Google Scholar]

23. Durner J., Schrickel K., Watts D.C., Ilie N. Determination of homologous distributions of Bis-EMA dimethacrylates in bulk-fill resin-composites by gc–ms. Dent Mater. 2015;31(4):473–480. [PubMed] [Google Scholar]

24. Montheard J.-P., Chatzopoulos M., Chappard D. 2-hydroxyethyl methacrylate (hema): chemical properties and applications in biomedical fields. J Macromol Sci Part C- Polym Rev. 1992;32(1):1–34. doi: 10.1080/15321799208018377. [CrossRef] [Google Scholar]

25. Wichterle O., LM D. Hydrophilic gels for biological use. Nature. 2016;185(4706):117–118. doi: 10.1038/185117a0. [CrossRef] [Google Scholar]

26. Refojo M.F., Yasuda H. Hydrogels from 2-hydroxyethyl methacrylate and propylene glycol monoacrylate. J Appl Polym Sci. 1965;9(7):2425–2435. doi: 10.1002/app.1965.070090707. [CrossRef] [Google Scholar]

27. Polydorou O., Knig A., Hellwig E., Kmmerer K. Uthethane dimethacrylate: a molecule that may cause confusion in dental research. J Biomed Mater Res Part B Appl Biomater. 2009;91B(1):1–4. doi: 10.1002/jbm.b.31383. [PubMed] [CrossRef] [Google Scholar]

28. Khatri C.A., Stansbury J.W., Schultheisz C.R., Antonucci J.M. Synthesis, characterization and evaluation of urethane derivatives of Bis-GMA. Dent Mater. 2003;19:584–588. doi: 10.1016/S0109-5641(02)00108-2. [PubMed] [CrossRef] [Google Scholar]

29. Stansbury J.W., Dickens S.H. Network formation and compositional drift during photo-initiated copolymerization of dimethacrylate monomers. Polymer. 2001;42(15):6363–6369. [Google Scholar]

30. Alshali R.Z., Silikas N., Satterthwaite J.D. Degree of conversion of bulk-fill compared to conventional resin-composites at two time intervals. Dent Mater. 2013;29(9):e213–e217. [PubMed] [Google Scholar]

31. Landuyt K.L.V., Snauwaert J., Munck J.D., Peumans M., Yoshida Y., Poitevin A., et al. Systematic review of the chemical composition of contemporary dental adhesives. Biomaterials. 2007;28(26):3757–3785. [PubMed] [Google Scholar]

32. Hadis M.A., Shortall A.C., Palin W.M. Competitive light absorbers in photoactive dental resin-based materials. Dent Mater. 2012;28(8):831–841. doi: 10.1016/j.dental.2012.04.029. [PubMed] [CrossRef] [Google Scholar]

33. Pratap B., Gupta R.K. Evaluation of physical properties of silica filled resin based dental composites. Int J Eng Adv Technol. 2019;8(6):5047–5049. [Google Scholar]

34. Datar R.A., Rueggeberg F.A., Caughman G.B., Wataha J.C., Lewis J.B., Schuster G.S. Effects of sub-toxic concentrations of camphorquinone on cell lipid metabolism. J Biomater Sci Polym Ed. 2005;16(10):1293–1302. doi: 10.1163/156856205774269557. [PubMed] [CrossRef] [Google Scholar]

35. Park Y.-J., Chae K.-H., Rawls H. Development of a new photoinitiation system for dental light-cure composite resins. Dent Mater. 1999;15(2):120–127. doi: 10.1016/S0109-5641(99)00021-4. [PubMed] [CrossRef] [Google Scholar]

36. Dunnick J.K., Brix A., Sanders J.M., Travlos G.S. N,n-dimethyl-p-toluidine, a component in dental materials, causes hematologic toxic and carcinogenic responses in rodent model systems. Toxicol Pathol. 2014;42(3):603–615. doi: 10.1177/0192623313489604. pMID: 23867143. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

37. Ge X., Ye Q., Song L., Laurence J.S., Spencer P. Synthesis and evaluation of a novel co-initiator for dentin adhesives: polymerization kinetics and leachables study. JOM. 2015;67(4):796–803. [PMC free article] [PubMed] [Google Scholar]

38. Pratap B., Gupta R.K., Bhardwaj B., Nag M. Modeling based experimental investigation on polymerization shrinkage and micro-hardness of nano alumina filled resin based dental material. J Mech Behav Biomed Mater. 2019;99:86–92. [PubMed] [Google Scholar]

39. NOMOTO R., HIRASAWA T. Residual monomer and pendant methacryloyl group in light-cured composite resins. Dent Mater J. 1992;11(2):177–188. [PubMed] [Google Scholar]

40. Pratap B., Gupta R.K., Ghosh S.S., Bhardwaj B. Process parameter optimization for minimum polymerization shrinkage of resin based dental material. AIP Conference Proceedings. 2019 (Vol. 2148, No. 1, p. 030020). (September) AIP Publishing. [Google Scholar]

41. Dionysopoulos D., Tolidis K., Gerasimou P. The Effect of Composition,Temperature and Post-Irradiation Curing of Bulk Fill Resin Composites on Polymerization Efficiency. Mater Res. 2016;19(2):466–473. [Google Scholar]

42. Jeong T.-s., Kang H.-s., Kim S.-k., Kim S., Kim H.-i., Kwon Y.H. The effect of resin shades on microhardness, polymerization shrinkage, and color change of dental composite resins. Dent Mater J. 2009;28(4):438–445. [PubMed] [Google Scholar]

43. Pfeifer C.S., Ferracane J.L., Sakaguchi R.L., Braga R.R. Photopolymerization stress in dental composites. J Dent Res. 2008;87(11):1043–1047. [PubMed] [Google Scholar]

44. Harahap K., Yudhit A., Sari F. In: Innovation in polymer science and Technology 2016 (IPST 2016), no. 223, IOP Conference series: materials science and engineering. Yudianti R., Azuma J., editors. 2017. Effect of bench time polymerization on depth of cure of dental composite resin; pp. 1–7. [CrossRef] [Google Scholar]

45. Muniz Gabrielle Ribeiro Lima, Souza Erick Miranda, Raposo Carolina Carramilo, Santana Ivone Lima. Influence of heat treatment on the sorption and solubility of direct composite resins. Indian J Dent Res. 2013;24(6):708–712. [PubMed] [Google Scholar]

46. Shamszadeh S., Sheikh-al eslamian S.M., Hasani E., Abrandabadi A.N., Panahandeh N. Color stability of the bulk-fill composite resins with different thickness in response to coffee / water immersion. Int J Dent. 2016;2016:1–5. doi: 10.1155/2016/7186140. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

47. Aguiar Flvio Henrique Baggio, Lazzari Carolina Rodrigues, Loma D.A., Ambrosano A.M., Lovadino J.R. Effect of light curing tip distance and resin shade on microhardness of a hybrid resin composite. Braz Oral Res. 2005;19(4):302–306. [PubMed] [Google Scholar]

48. Segal Pnina, Lugassy Diva, Mijiritsky Eitan, Dekel Michal, Ben-Amar Ariel, Ormianer Zeev, et al. The effect of the light intensity and light distances of LED and QTH curing devices on the hardness of two light-cured nano-resin composites. Mater Sci Appl. 2015;6(11):1071–1083. doi: 10.4236/msa.2015.611106. [CrossRef] [Google Scholar]

49. Palin W., Hadis M., Leprince J.G., Leloup G., Boland L., Fleming G.J.P., et al. Reduced polymerization stress of mapo-containing resin composites with increased curing speed, degree of conversion and mechanical properties. Dent Mater. 2014;30(5):507–516. [PubMed] [Google Scholar]

50. Mousavinasab S.M., Barekatain M., Sadeghi E., Nourbakhshian F. Evaluation of light curing distance and mylar strips color on surface hardness of two different dental composite resins. Open Dent J. 2014;8:144–147. [PMC free article] [PubMed] [Google Scholar]

51. Ferdous S.F., Sarker M.F., Adnan A. Role of nanoparticle dispersion and filler-matrix interface on the matrix dominated failure of rigid c60-pe nanocomposites: a molecular dynamics simulation study. Polymer. 2013;54(10):2565–2576. doi: 10.1016/j.polymer.2013.03.014. [CrossRef] [Google Scholar]

52. Sugerman S.J.M.G. Kenrich Petrochemicals; Bkayonne, N.J: 1993. Ken-react reference manual: titanate, zirconate and aluminate coupling agents. [Google Scholar]

53. Cheng H., Tsoi J.-H., Zwahlen R., Matinlinna J. Effects of silica-coating and a zirconate coupling agent on shear bond strength of flowable resinzirconia bonding. Int J Adhes Adhes. 2014;50:11–16. doi: 10.1016/j.ijadhadh.2013.12.025. [CrossRef] [Google Scholar]

54. Bose S., Mahanwar P.A. Effect of titanate coupling agent on the mechanical, thermal, dielectric, rheological, and morphological properties of filled nylon 6. J Appl Polym Sci. 2005;99(1):266–272. doi: 10.1002/app.22472. [CrossRef] [Google Scholar]

55. Nihei T. Dental applications for silane coupling agents. J Oral Sci. 2014;58(2):151–155. doi: 10.2334/josnusd.16-0035. [PubMed] [CrossRef] [Google Scholar]

56. Kumar S.R., Patnaik A., Bhat I.K. Physical and thermo-mechanical characterizations of resin-based dental composite reinforced with Silane-Modified nanoalumina filler particle. Proc Inst Mech Eng Part L J Mater Des Appl. 2016;230(2):504–514. doi: 10.1177/1464420715581004. [CrossRef] [Google Scholar]

57. Antonucci J., Dickens S., Fowler B., Xu H. J Res Natl Inst Stand Technol. 2005;110(5):541. doi: 10.6028/jres.110.081. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

58. Nishiyama N., Komatsu K., Fukai K., Nemoto K., Kumagai M. Influence of adsorption characteristics of silane on the hydrolytic stability of silane at the silica-matrix interface. Composites. 1995;26(4):309–313. doi: 10.1016/0010-4361(95)93674-9. [CrossRef] [Google Scholar]

59. CRAIG R., DOOTZ E. Effect of mixed silanes on the hydrolytic stability of composites. J Oral Rehabil. 1996;23(11):751–756. doi: 10.1046/j.1365-2842.1996.d01-194.x. [PubMed] [CrossRef] [Google Scholar]

60. Arsecularatne J., Chung N., Hoffman M. An in vitro study of the wear behaviour of dental composites. Biosurface Biotribology. 2016;2(3):102–113. doi: 10.1016/j.bsbt.2016.09.002. [CrossRef] [Google Scholar]

61. Heintze S.D., Forjanic M., Ohmiti K., Rousson V. Surface deterioration of dental materials after simulated toothbrushing in relation to brushing time and load. Dent Mater. 2010;26:306–319. [PubMed] [Google Scholar]

62. Addy M., Shellis R. Interaction between attrition,Abrasion and Erosion in tooth wear. Dental Erosion. 2006;20:17–31. doi: 10.1159/000093348. [PubMed] [CrossRef] [Google Scholar]

63. Sonal M.G., Kumar Shiv Ranjan, Patnaik Amar, Meena Anoj. Effect of adding nanosilica particulate filler on the wear behavior of dental composite. Polym Compos. 2017 [Google Scholar]

64. Gan X.Q., Cai Z.B., Zhang B.R., Zhou X.D., Yu H.Y. Friction and wear behaviors of indirect dental restorative composites. Tribol Lett. 2012;46:75–86. [Google Scholar]

65. Hu X., Zhang Q., Ning J., Wu W., Li C. Study of two-body wear performance of dental materials. J Natl Med Assoc. 2017:1–6. [PubMed] [Google Scholar]

66. Chadda H., Satapathy B.K., Patnaik A., Ray A.R. Mechanistic interpretations of fracture toughness and correlations to wear behavior of hydroxyapatite and silica/hydroxyapatite filled bis-GMA/TEGDMA micro/hybrid dental restorative composites. Compos. Part B Eng. 2017;130:132–146. doi: 10.1016/j.compositesb.2017.07.069. [CrossRef] [Google Scholar]

67. Altaie A., Bubb N.L., Franklin P., Dowling A.H., Fleming G.J.P., Wood D.J. An approach to understanding tribological behaviour of dental composites through volumetric wear loss and wear mechanism determination; beyond material ranking. J Dent. 2017;59:41–47. doi: 10.1016/j.jdent.2017.02.004. [PubMed] [CrossRef] [Google Scholar]

68. Souza J.C.M., Bentes A.C., Reis K., Gavinha S., Buciumeanu M., Henriques B., et al. Abrasive and sliding wear of resin composites for dental restorations. Tribol Int. 2016;102:154–160. doi: 10.1016/j.triboint.2016.05.035. [CrossRef] [Google Scholar]

69. Zhi L., Bortolotto T., Krejci I. Comparative in vitro wear resistance of CAD/CAM composite resin and ceramic materials. J Prosthet Dent. 2016;115:199–202. [PubMed] [Google Scholar]

70. Morozova Y., Holik P., Ctvrtlik R., Tomastik J., Azar B., Sedlat Jurskov E., et al. Methods of wear measuring in dentistry. Iosr J Dent Med Sci. 2016;15(6):63–68. [Google Scholar]

71. Mjor I.A., Moorhead J.E., Dahl J.E. Reasons for replacement of restorations in permanent teeth in general dental practice. Int Dent J. 2000;50:361–366. [PubMed] [Google Scholar]

72. Sakaguchi R.L. Review of the current status and challenges for dental posterior restorative composites: clinical, chemistry, and physical behavior considerations. Dent Mater. 2005;21:3–6. [PubMed] [Google Scholar]

73. Van Nieuwenhuysen J.P., D’Hoore W., Carvalho J., Qvist V. Long-term evaluation of extensive restorations in permanent teeth. J Dent. 2003;31:395–405. [PubMed] [Google Scholar]

74. Baran G.R., Boberick K.G., McCool J.I. Fatigue of restorative materials. Crit Rev Oral Biol Med. 2001;12:350–360. [PubMed] [Google Scholar]

75. White S.R., Sottos N.R., Geubelle P.H., Moore J.S., Kessler M.R., Sriram S.R., et al. Autonomic healing of polymer composites. Nature. 2001;409:794–797. [PubMed] [Google Scholar]

76. Wertzberger B.E., Steere J.T., Pfeifer R.M., Nensel M.A., Latta M.A., Gross S.M. Physical characterization of a self-healing dental restorative material. J Appl Polym Sci. 2010;118:428–434. [Google Scholar]

77. Then S., Neon G.S., kasim N.H. Performance of melamine modified urea–formaldehyde microcapsules in a dental host material. J Appl Polym Sci. 2011;122:2557–2562. [Google Scholar]

78. Bevan C., Snellings W.M., Dodd D.E., Egan G.F. Subchronic toxicity study of dicyclopentadiene vapor in rats. Toxicol Ind Health. 1992;8:353–367. [PubMed] [Google Scholar]

79. Caruso M.M., Delafuente D.A., Ho V., Sottos N.R., Moore J.S., White S.R. Solvent-promoted self-healing epoxy materials. Macromolecules. 2007;40:8830–8832. [Google Scholar]

80. Ouyang X., Huang X., Pan Q., Zuo C., Huang C., Yang X., et al. Synthesis and characterization of triethylene glycol dimethacrylate nanocapsules used in a self-healing bonding resin. J Dent. 2011;39:825–833. [PubMed] [Google Scholar]

81. Wu J., Weir M.D., Zhang Q., Zhou C., Melo M.A., Xu H.H. Novel self-healing dental resin with microcapsules of polymerizable triethylene glycol dimethacrylate and N, N-dihydroxyethyl-p-toluidine. Dent Mater. 2016;32(Feb (2)):294–304. [PMC free article] [PubMed] [Google Scholar]

82. Li Q., Mishra A.K., Kim N.H., Kuila T., Lau K.T., Lee J.H. Effects of processing conditions of poly (methylmethacrylate) encapsulated liquid curing agent on the properties of self-healing composites. Compos Part B Eng. 2013;49(Jun):6–15. [Google Scholar]

83. Wu J., Weir M.D., Melo M.A., Strassler H.E., Xu H.H. Effects of water-aging on self-healing dental composite containing microcapsules. J Dent. 2016;47(Apr):86–93. [PMC free article] [PubMed] [Google Scholar]

84. Chen C., Wu J., Weir M., Wang L., Zhou X., Xu H., et al. Dental composite formulation design with bioactivity on protein adsorption combined with crack-healing capability. J Funct Biomater. 2017;8(Sep (3)):40. [PMC free article] [PubMed] [Google Scholar]

85. Zhang N., Zhang K., Xie X., Dai Z., Zhao Z., Imazato S., et al. Nanostructured polymeric materials with protein-repellent and anti-caries properties for dental applications. Nanomaterials. 2018;8(Jun (6)):393. [PMC free article] [PubMed] [Google Scholar]

86. Yahyazadehfar M., Huyang G., Wang X., Fan Y., Arola D., Sun J. Durability of self-healing dental composites: a comparison of performance under monotonic and cyclic loading. Mater Sci Eng C. 2018;93(Dec):1020–1026. [PMC free article] [PubMed] [Google Scholar]

87. Huyang G., Sun J. Clinically applicable self-healing dental resin composites. MRS Adv. 2016;1(8):547–552. [Google Scholar]

88. Huyang G., Debertin A.E., Sun J. Design and development of self-healing dental composites. Mater Des. 2016;94:295–302. [PMC free article] [PubMed] [Google Scholar]

89. Gilabert F.A., Garoz D., Van Paepegem W. Stress concentrations and bonding strength in encapsulation-based self-healing materials. Mater Des. 2015;67:28–41. [Google Scholar]

90. Yue S., Wu J., Zhang Q., Zhang K., Weir M.D., Imazato S., et al. Novel dental adhesive resin with crack self-healing, antimicrobial and remineralization properties. J Dent. 2018;75:48–57. [PubMed] [Google Scholar]

91. DEMARCO F.F., COLLARES K., CORREA M.B., CENCI M.S., de MORAES R.R., OPDAM N.J. Should my composite last forever? Why are they failing? Braz Oral Res. 2017;31(suppl 1):92–99. doi: 10.1590/1807-3107bor-2017.vol31.0056. [PubMed] [CrossRef] [Google Scholar]

92. Imazato S., Ehara A., Torii M., Ebisu S. Antibacterial activity of dentine primer containing MDPB after curing. J Dent. 1998;26(3):267–271. [PubMed] [Google Scholar]

93. Imazato S., Kinomoto Y., Tarumi H., Ebisu S., Tay F.R. Antibacterial activity and bonding characteristics of an adhesive resin containing antibacterial monomer MDPB. Dent Mater. 2003;19(4):313–319. [PubMed] [Google Scholar]

94. Miki S., Kitagawa H., Kitagawa R., Kiba W., Hayashi M., Imazato S. Antibacterial activity of resin composites containing surface pre-reacted glass-ionomer (S-PRG) filler. Dent Mater. 2016;32(9):1095–1102. [PubMed] [Google Scholar]

95. Zhang J.F., Wu R., Fan Y., Liao S., Wang Y., Wen Z.T., et al. Antibacterial dental composites with chlorhexidine and mesoporous silica. J Dent Res. 2014;93(12):1283–1289. doi: 10.1177/0022034514555143. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

96. Stencel R., Kasperski J., Pakie la W., Mertas A., Bobela E., Barszczewska-Rybarek I., et al. Properties of experimental dental composites containing antibacterial silver-releasing filler. Materials. 2018;11(6):1031. doi: 10.3390/ma11061031. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

97. Imazato S., hua Chen J., Ma S., Izutani N., Li F. Antibacterial resin monomers based on quaternary ammonium and their benefits in restorative dentistry. Jpn Dent Sci Rev. 2012;48(2):115–125. doi: 10.1016/j.jdsr.2012.02.003. [CrossRef] [Google Scholar]

98. Imazato S., Torii M., Tsuchitani Y., McCabe J.F., Russell R.R. Incorporation of bacterial inhibitor into resin composite. J Dent Res. 1994;73:1437–1443. [PubMed] [Google Scholar]

99. Imazato S., Ohmori K., Russell R.R., McCabe J.F., Momoi Y., Maeda N. Determination of bactericidal activity of antibacterial monomer MDPB by a viability staining method. Dent Mater J. 2008;27:145–148. [PubMed] [Google Scholar]

100. Imazato S., Ebi N., Tarumi H., Russell R.R., Kaneko T., Ebisu S. Bactericidal activity and cytotoxicity of antibacterial monomer MDPB. Biomaterials. 1999;20:899–903. 20. [PubMed] [Google Scholar]

101. Imazato S., Torii Y., Takatsuka T., Inoue K., Ebi N., Ebisu S. Bactericidal effect of dentin primer containing antibacterial monomer methacryloyloxydodecylpyridinium bromide (MDPB) against bacteria in human carious dentin. J Oral Rehabil. 2001;28:314–319. [PubMed] [Google Scholar]

102. Beyth N., Yudovin-farber I., Bahir R., Domb A.J., Weiss E.I. Antibacterial activity of dental composites containing quaternary ammonium polyethylenimine nanoparticles against streptococcus mutans. Biomaterials. 2006;27:3995–4002. doi: 10.1016/j.biomaterials.2006.03.003. [PubMed] [CrossRef] [Google Scholar]

103. Cheng L., Zhang K., Weir M.D., Melo M.A.S., Zhou X., Xu H.H. Nanotechnology strategies for antibacterial and remineralizing composites and adhesives to tackle dental caries. Nanomedicine. 2015;10(4):627–641. [PMC free article] [PubMed] [Google Scholar]

104. Wang Y., Samoei G.K., Lallier T.E., Xu X. Synthesis and characterization of new antibacterial fluoride-releasing monomer and dental composite. ACS Macro Lett. 2012;2(1):59–62. [PMC free article] [PubMed] [Google Scholar]

105. Delaviz Y., Liu T.W., Deonarain A.R., Finer Y., Shokati B., Santerre J.P. Physical properties and cytotoxicity of antimicrobial dental resin adhesives containing dimethacrylate oligomers of Ciprofloxacin and Metronidazole. Dent Mater. 2019;35(2):229–243. [PubMed] [Google Scholar]

106. Chen H., Wang R., Zhang J., Hua H., Zhu M. Synthesis of core-shell structured ZnO@ m-SiO2 with excellent reinforcing effect and antimicrobial activity for dental resin composites. Dent Mater. 2018;34(12):1846–1855. [PubMed] [Google Scholar]

107. Boaro L.C.C., Campos L.M., Varca G.H.C., dos Santos T.M.R., Marques P.A., Sugii M.M., et al. Antibacterial resin-based composite containing chlorhexidine for dental applications. Dent Mater. 2019 [PubMed] [Google Scholar]

108. Imazato S., Ebi N., Takahashi Y., Kaneko T., Ebisu S., Russell R.R. Antibacterial activity of bactericide-immobilized filler for resin-based restoratives. Biomaterials. 2003;24:3605–3609. [PubMed] [Google Scholar]

109. Imazato S., Imai T., Russell R.R., Torii M., Ebisu S. Antibacterial activity of cured dental resin incorporating the antibacterial monomer MDPB and an adhesion-promoting monomer. J Biomed Mater Res. 1998;39:511–515. [PubMed] [Google Scholar]

110. Pratap B., Gupta R.K., Bhardwaj B. Advances in industrial and production engineering. Springer; Singapore: 2019. Study of sliding wear behavior of alumina oxide filled fiber composite using design of experiment; pp. 735–742. [Google Scholar]


Page 2

Basic properties of resin monomers.

MonomerMolecular WeightConcentration of double bonds (mol/kg)Viscosity (Pa.s)Refractive IndexDensity
Bis-GMA512.593.97001.54971.16
Bis-EMA5403.731.5321.12
TEGDMA286.36.990.051.461.09
UDMA4704.258.51.4851.12
HEMA130.14**1.4521.07
PPGDMA600*0.091.451.01