Escherichia coli cryptococcus neoformans and streptococcus mutans cause several infections

  1. Fleming, A. On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae. Br. J. Exp. Pathol. 10, 226–236 (1929).

    CAS  PubMed Central  Google Scholar 

  2. Baena-Monroy, T. et al. Candida albicans, Staphylococcus aureus and Streptococcus mutans colonization in patients wearing dental prosthesis. Med. Oral Patol. Oral Cir. Bucal 10, E27–E39 (2005).

    PubMed  Google Scholar 

  3. Gupta, N., Haque, A., Mukhopadhyay, G., Narayan, R. P. & Prasad, R. Interactions between bacteria and Candida in the burn wound. Burns 31, 375–378 (2005).

    Article  PubMed  Google Scholar 

  4. Hermann, C., Hermann, J., Munzel, U. & Ruchel, R. Bacterial flora accompanying Candida yeasts in clinical specimens. Mycoses 42, 619–627 (1999).

    CAS  Article  PubMed  Google Scholar 

  5. Dyess, D. L., Garrison, R. N. & Fry, D. E. Candida sepsis. Implications of polymicrobial blood-borne infection. Arch. Surg. 120, 345–348 (1985).

    CAS  Article  PubMed  Google Scholar 

  6. Verghese, A., Prabhu, K., Diamond, R. D. & Sugar, A. Synchronous bacterial and fungal septicemia. A marker for the critically ill surgical patient. Am. Surg. 54, 276–283 (1988).

    CAS  PubMed  Google Scholar 

  7. Tchekmedyian, N. S. et al. Special studies of the Hickman catheter of a patient with recurrent bacteremia and candidemia. Am. J. Med. Sci. 291, 419–424 (1986).

    CAS  Article  PubMed  Google Scholar 

  8. Bauernfeind, A. et al. Qualitative and quantitative microbiological analysis of sputa of 102 patients with cystic fibrosis. Infection 15, 270–277 (1987).

    CAS  Article  PubMed  Google Scholar 

  9. McAlester, G., O'Gara, F. & Morrissey, J. P. Signal-mediated interactions between Pseudomonas aeruginosa and Candida albicans. J. Med. Microbiol. 57, 563–569 (2008).

    CAS  Article  PubMed  Google Scholar 

  10. Rosenthal, V. D. et al. Device-associated nosocomial infections in 55 intensive care units of 8 developing countries. Ann. Intern. Med. 145, 582–591 (2006).

    Article  PubMed  Google Scholar 

  11. Azoulay, E. et al. Candida colonization of the respiratory tract and subsequent Pseudomonas ventilator-associated pneumonia. Chest 129, 110–117 (2006). This article shows the importance of bacterial–fungal interactions in the clinical setting.

    Article  PubMed  Google Scholar 

  12. Adair, C. G. et al. Implications of endotracheal tube biofilm for ventilator-associated pneumonia. Intensive Care Med. 25, 1072–1076 (1999).

    CAS  Article  PubMed  Google Scholar 

  13. Kojic, E. M. & Darouiche, R. O. Candida infections of medical devices. Clin. Microbiol. Rev. 17, 255–267 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Marrie, T. J. & Costerton, J. W. Scanning and transmission electron microscopy of in situ bacterial colonization of intravenous and intraarterial catheters. J. Clin. Microbiol. 19, 687–693 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Cugini, C. et al. Farnesol, a common sesquiterpene, inhibits PQS production in Pseudomonas aeruginosa. Mol. Microbiol. 65, 896–906 (2007).

    CAS  Article  PubMed  Google Scholar 

  16. Peleg, A. Y. et al. Prokaryote-eukaryote interactions identified by using Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 105, 14585–14590 (2008). This study demonstrates for the first time the use of a non-mammalian model system to investigate bacterial–fungal interactions.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Boon, C. et al. A novel DSF-like signal from Burkholderia cenocepacia interferes with Candida albicans morphological transition. ISME J. 2, 27–36 (2008).

    CAS  Article  PubMed  Google Scholar 

  18. Davis-Hanna, A., Piispanen, A. E., Stateva, L. I. & Hogan, D. A. Farnesol and dodecanol effects on the Candida albicans Ras1-cAMP signalling pathway and the regulation of morphogenesis. Mol. Microbiol. 67, 47–62 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Hogan, D. A., Vik, A. & Kolter, R. A Pseudomonas aeruginosa quorum-sensing molecule influences Candida albicans morphology. Mol. Microbiol. 54, 1212–1223 (2004). This paper describes a mechanism, mediated through a quorum-sensing molecule, by which P. aeruginosa inhibits the morphogenic transition of C. albicans from yeast to hyphae.

    CAS  Article  PubMed  Google Scholar 

  20. Inoue, Y. et al. The antibacterial effects of terpene alcohols on Staphylococcus aureus and their mode of action. FEMS Microbiol. Lett. 237, 325–331 (2004).

    CAS  PubMed  Google Scholar 

  21. Jabra-Rizk, M. A., Meiller, T. F., James, C. E. & Shirtliff, M. E. Effect of farnesol on Staphylococcus aureus biofilm formation and antimicrobial susceptibility. Antimicrob. Agents Chemother. 50, 1463–1469 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Wang, L. H. et al. A bacterial cell-cell communication signal with cross-kingdom structural analogues. Mol. Microbiol. 51, 903–912 (2004).

    CAS  Article  PubMed  Google Scholar 

  23. Gibson, J., Sood, A. & Hogan, D. A. Pseudomonas aeruginosa-Candida albicans interactions: localization and fungal toxicity of a phenazine derivative. Appl. Environ. Microbiol. 75, 504–513 (2009).

    CAS  Article  PubMed  Google Scholar 

  24. Hogan, D. A. & Kolter, R. Pseudomonas-Candida interactions: an ecological role for virulence factors. Science 296, 2229–2232 (2002). This article discusses the interactions between two important human pathogens at the molecular level and shows that known pseudomonal virulence factors are important for the antagonistic relationship of Pseudomonas spp. with C. albicans.

    CAS  Article  PubMed  Google Scholar 

  25. Kerr, J. Inhibition of fungal growth by Pseudomonas aeruginosa and Pseudomonas cepacia isolated from patients with cystic fibrosis. J. Infect. 28, 305–310 (1994).

    CAS  Article  PubMed  Google Scholar 

  26. Kerr, J. R. Suppression of fungal growth exhibited by Pseudomonas aeruginosa. J. Clin. Microbiol. 32, 525–527 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Tampakakis, E., Peleg, A. Y. & Mylonakis, E. The interaction of Candida albicans with an intestinal pathogen; Salmonella enterica serovar Typhimurium. Eukaryot. Cell 8, 732–737 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Fitzsimmons, N. & Berry, D. R. Inhibition of Candida albicans by Lactobacillus acidophilus: evidence for the involvement of a peroxidase system. Microbios 80, 125–133 (1994).

    CAS  PubMed  Google Scholar 

  29. Buffo, J., Herman, M. A. & Soll, D. R. A characterization of pH-regulated dimorphism in Candida albicans. Mycopathologia 85, 21–30 (1984).

    CAS  Article  PubMed  Google Scholar 

  30. Klotz, S. A., Chasin, B. S., Powell, B., Gaur, N. K. & Lipke, P. N. Polymicrobial bloodstream infections involving Candida species: analysis of patients and review of the literature. Diagn. Microbiol. Infect. Dis. 59, 401–406 (2007).

    CAS  Article  PubMed  Google Scholar 

  31. Nseir, S. et al. Impact of antifungal treatment on Candida-Pseudomonas interaction: a preliminary retrospective case-control study. Intensive Care Med. 33, 137–142 (2007).

    Article  PubMed  Google Scholar 

  32. Gudlaugsson, O. et al. Attributable mortality of nosocomial candidemia, revisited. Clin. Infect. Dis. 37, 1172–1177 (2003).

    Article  PubMed  Google Scholar 

  33. Gale, D. & Sandoval, B. Response of mice to the inoculations of both Candida albicans and Escherichia coli. I. The enhancement phenomenon. J. Bacteriol. 73, 616–624 (1957).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Akagawa, G., Abe, S. & Yamaguchi, H. Mortality of Candida albicans-infected mice is facilitated by superinfection of Escherichia coli or administration of its lipopolysaccharide. J. Infect. Dis. 171, 1539–1544 (1995).

    CAS  Article  PubMed  Google Scholar 

  35. Burd, R. S., Raymond, C. S. & Dunn, D. L. Endotoxin promotes synergistic lethality during concurrent Escherichia coli and Candida albicans infection. J. Surg. Res. 52, 537–542 (1992).

    CAS  Article  PubMed  Google Scholar 

  36. Ikeda, T., Suegara, N., Abe, S. & Yamaguchi, H. Efficacy of antibacterial drugs in mice with complex infection by Candida albicans and Escherichia coli. J. Antibiot. (Tokyo) 52, 552–558 (1999).

    CAS  Article  Google Scholar 

  37. Klaerner, H. G. et al. Candida albicans and Escherichia coli are synergistic pathogens during experimental microbial peritonitis. J. Surg. Res. 70, 161–165 (1997).

    CAS  Article  PubMed  Google Scholar 

  38. Neely, A. N., Law, E. J. & Holder, I. A. Increased susceptibility to lethal Candida infections in burned mice preinfected with Pseudomonas aeruginosa or pretreated with proteolytic enzymes. Infect. Immun. 52, 200–204 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Roux., D. et al. Candida albicans impairs macrophage function and facilitates Pseudomonas aeruginosa pneumonia in rat. Crit. Care Med. 37, 1062–1067 (2009). This study demonstrates the effect of C. albicans colonization of the airway on pseudomonal pneumonia in rats, showing that pre-colonization with live C. albicans increases pseudomonal pneumonia and that this may be partly due to impaired macrophage function.

    Article  PubMed  Google Scholar 

  40. Xu, X. L. et al. Bacterial peptidoglycan triggers Candida albicans hyphal growth by directly activating the adenylyl cyclase Cyr1p. Cell Host Microbe 4, 28–39 (2008). This work finds that bacterial peptidoglycan products, which are present in human blood, can stimulate an important virulence determinant in C. albicans : hyphal growth.

    CAS  Article  PubMed  Google Scholar 

  41. Lo, H. J. et al. Nonfilamentous C. albicans mutants are avirulent. Cell 90, 939–949 (1997).

    CAS  Article  PubMed  Google Scholar 

  42. Carlson, E. Enhancement by Candida albicans of Staphylococcus aureus, Serratia marcescens, and Streptococcus faecalis in the establishment of infection in mice. Infect. Immun. 39, 193–197 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Carlson, E. & Johnson, G. Protection by Candida albicans of Staphylococcus aureus in the establishment of dual infection in mice. Infect. Immun. 50, 655–659 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Carlson, E. Effect of strain of Staphylococcus aureus on synergism with Candida albicans resulting in mouse mortality and morbidity. Infect. Immun. 42, 285–292 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Allard, J. B. et al. Th2 allergic immune response to inhaled fungal antigens is modulated by TLR-4-independent bacterial products. Eur. J. Immunol. 39, 776–788 (2009). This article describes the use of a mammalian model system to investigate the immunological responses to lung exposure to P. aeruginosa and C. albicans antigens.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. Braun-Fahrlander, C. et al. Environmental exposure to endotoxin and its relation to asthma in school-age children. N. Engl. J. Med. 347, 869–877 (2002).

    Article  PubMed  Google Scholar 

  47. Garn, H. & Renz, H. Epidemiological and immunological evidence for the hygiene hypothesis. Immunobiology 212, 441–452 (2007).

    CAS  Article  PubMed  Google Scholar 

  48. Bach, J. F. The effect of infections on susceptibility to autoimmune and allergic diseases. N. Engl. J. Med. 347, 911–920 (2002).

    Article  PubMed  Google Scholar 

  49. de Macedo, J. L. & Santos, J. B. Bacterial and fungal colonization of burn wounds. Mem. Inst. Oswaldo Cruz 100, 535–539 (2005).

    Article  PubMed  Google Scholar 

  50. Hughes, W. T. & Kim, H. K. Mycoflora in cystic fibrosis: some ecologic aspects of Pseudomonas aeruginosa and Candida albicans. Mycopathol. Mycol. Appl. 50, 261–269 (1973).

    CAS  Article  PubMed  Google Scholar 

  51. Hockey, L. J. et al. Detection of fungemia obscured by concomitant bacteremia: in vitro and in vivo studies. J. Clin. Microbiol. 16, 1080–1085 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Burns, J. L. et al. Effect of chronic intermittent administration of inhaled tobramycin on respiratory microbial flora in patients with cystic fibrosis. J. Infect. Dis. 179, 1190–1196 (1999).

    CAS  Article  PubMed  Google Scholar 

  53. Hornby, J. M. et al. Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl. Environ. Microbiol. 67, 2982–2992 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. Caiazza, N. C., Merritt, J. H., Brothers, K. M. & O'Toole, G. A. Inverse regulation of biofilm formation and swarming motility by Pseudomonas aeruginosa PA14. J. Bacteriol. 189, 3603–3612 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. Shrout, J. D. et al. The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional. Mol. Microbiol. 62, 1264–1277 (2006).

    CAS  Article  PubMed  Google Scholar 

  56. Peleg, A. Y., Seifert, H. & Paterson, D. L. Acinetobacter baumannii: emergence of a successful pathogen. Clin. Microbiol. Rev. 21, 538–582 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. Dijkshoorn, L., Nemec, A. & Seifert, H. An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii. Nature Rev. Microbiol. 5, 939–951 (2007).

    CAS  Article  Google Scholar 

  58. Munoz-Price, L. S. & Weinstein, R. A. Acinetobacter infection. N. Engl. J. Med. 358, 1271–1281 (2008).

    CAS  Article  PubMed  Google Scholar 

  59. Chim., H., Tan, B. H. & Song, C. Five-year review of infections in a burn intensive care unit: high incidence of Acinetobacter baumannii in a tropical climate. Burns 33, 1008–1014 (2007).

    Article  PubMed  Google Scholar 

  60. Richards, M. J., Edwards, J. R., Culver, D. H. & Gaynes, R. P. Nosocomial infections in medical intensive care units in the United States. National Nosocomial Infections Surveillance System. Crit. Care Med. 27, 887–892 (1999).

    CAS  Article  PubMed  Google Scholar 

  61. Liu, C. H. et al. Study of the antifungal activity of Acinetobacter baumannii LCH001 in vitro and identification of its antifungal components. Appl. Microbiol. Biotechnol. 76, 459–466 (2007).

    CAS  Article  PubMed  Google Scholar 

  62. Smith, M. G., Des Etages, S. G. & Snyder, M. Microbial synergy via an ethanol-triggered pathway. Mol. Cell Biol. 24, 3874–3884 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. Gaddy, J. A., Tomaras, A. P. & Actis, L. A. The Acinetobacter baumannii 19606 OmpA protein plays a role in biofilm formation on abiotic surfaces and in the interaction of this pathogen with eukaryotic cells. Infect. Immun. 77, 3150–3160 (2009). This study shows the importance of a known A. baumannii virulence factor, OmpA, for the interaction of this bacterium with both C. albicans and human alveolar epithelial cells.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. Aballay, A., Yorgey, P. & Ausubel, F. M. Salmonella typhimurium proliferates and establishes a persistent infection in the intestine of Caenorhabditis elegans. Curr. Biol. 10, 1539–1542 (2000).

    CAS  Article  PubMed  Google Scholar 

  65. Breger, J. et al. Antifungal chemical compounds identified using a C. elegans pathogenicity assay. PLoS Pathog. 3, e18 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Labrousse, A., Chauvet, S., Couillault, C., Kurz, C. L. & Ewbank, J. J. Caenorhabditis elegans is a model host for Salmonella typhimurium. Curr. Biol. 10, 1543–1545 (2000).

    CAS  Article  PubMed  Google Scholar 

  67. Frases, S., Chaskes, S., Dadachova, E. & Casadevall, A. Induction by Klebsiella aerogenes of a melanin-like pigment in Cryptococcus neoformans. Appl. Environ. Microbiol. 72, 1542–1550 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. Pukkila-Worley, R. & Mylonakis, E. Epidemiology and management of cryptococcal meningitis: developments and challenges. Expert Opin. Pharmacother. 9, 551–560 (2008).

    CAS  Article  PubMed  Google Scholar 

  69. Nosanchuk, J. D. & Casadevall, A. The contribution of melanin to microbial pathogenesis. Cell. Microbiol. 5, 203–223 (2003).

    CAS  Article  PubMed  Google Scholar 

  70. Frases, S., Salazar, A., Dadachova, E. & Casadevall, A. Cryptococcus neoformans can utilize the bacterial melanin precursor homogentisic acid for fungal melanogenesis. Appl. Environ. Microbiol. 73, 615–621 (2007).

    CAS  Article  PubMed  Google Scholar 

  71. Kroes, I., Lepp, P. W. & Relman, D. A. Bacterial diversity within the human subgingival crevice. Proc. Natl Acad. Sci. USA 96, 14547–14552 (1999).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  72. O'Sullivan, J. M., Jenkinson, H. F. & Cannon, R. D. Adhesion of Candida albicans to oral streptococci is promoted by selective adsorption of salivary proteins to the streptococcal cell surface. Microbiol. 146, 41–48 (2000).

    CAS  Article  Google Scholar 

  73. Jenkinson, H. F., Lala, H. C. & Shepherd, M. G. Coaggregation of Streptococcus sanguis and other streptococci with Candida albicans. Infect. Immun. 58, 1429–1436 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Holmes, A. R., Gopal, P. K. & Jenkinson, H. F. Adherence of Candida albicans to a cell surface polysaccharide receptor on Streptococcus gordonii. Infect. Immun. 63, 1827–1834 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Holmes, A. R., McNab, R. & Jenkinson, H. F. Candida albicans binding to the oral bacterium Streptococcus gordonii involves multiple adhesin-receptor interactions. Infect. Immun. 64, 4680–4685 (1996). This work uncovers the complex physical interactions that can occur between bacteria and fungi.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Klotz, S. A. et al. Candida albicans Als proteins mediate aggregation with bacteria and yeasts. Med. Mycol. 45, 363–370 (2007).

    CAS  Article  PubMed  Google Scholar 

  77. Adam, B., Baillie, G. S. & Douglas, L. J. Mixed species biofilms of Candida albicans and Staphylococcus epidermidis. J. Med. Microbiol. 51, 344–349 (2002).

    Article  PubMed  Google Scholar 

  78. Pope, L. M., Cole, G. T., Guentzel, M. N. & Berry, L. J. Systemic and gastrointestinal candidiasis of infant mice after intragastric challenge. Infect. Immun. 25, 702–707 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Wagner, R. D. et al. Biotherapeutic effects of probiotic bacteria on candidiasis in immunodeficient mice. Infect. Immun. 65, 4165–4172 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Noverr, M. C. & Huffnagle, G. B. Regulation of Candida albicans morphogenesis by fatty acid metabolites. Infect. Immun. 72, 6206–6210 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  81. Hoberg, K. A., Cihlar, R. L. & Calderone, R. A. Inhibitory effect of cerulenin and sodium butyrate on germination of Candida albicans. Antimicrob. Agents Chemother. 24, 401–408 (1983).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  82. Martinez, R. C. et al. Effect of Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 on the ability of Candida albicans to infect cells and induce inflammation. Microbiol. Immunol. 53, 487–495 (2009).

    CAS  Article  PubMed  Google Scholar 

  83. Spear, G. T., Zariffard, M. R., Cohen, M. H. & Sha, B. E. Vaginal IL-8 levels are positively associated with Candida albicans and inversely with lactobacilli in HIV-infected women. J. Reprod. Immunol. 78, 76–79 (2008). A clinical study that provides the basis for future work on bacterial–fungal interactions that can be mediated by the host immune response.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  84. Coudeyras, S., Jugie, G., Vermerie, M. & Forestier, C. Adhesion of human probiotic Lactobacillus rhamnosus to cervical and vaginal cells and interaction with vaginosis-associated pathogens. Infect. Dis. Obstet. Gynecol. 2008, 549640 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Mastromarino, P. et al. Characterization and selection of vaginal Lactobacillus strains for the preparation of vaginal tablets. J. Appl. Microbiol. 93, 884–893 (2002).

    CAS  Article  PubMed  Google Scholar 

  86. Shen, S., Samaranayake, L. P. & Yip, H. K. Coaggregation profiles of the microflora from root surface caries lesions. Arch. Oral Biol. 50, 23–32 (2005).

    CAS  Article  PubMed  Google Scholar 

  87. Grillot, R., Portmann-Coffin, V. & Ambroise-Thomas, P. Growth inhibition of pathogenic yeasts by Pseudomonas aeruginosa in vitro: clinical implications in blood cultures. Mycoses 37, 343–347 (1994).

    CAS  Article  PubMed  Google Scholar 

  88. Kennedy, M. J., Rogers, A. L. & Yancey, R. J. Jr. An anaerobic continuous-flow culture model of interactions between intestinal microflora and Candida albicans. Mycopathologia 103, 125–134 (1988).

    CAS  Article  PubMed  Google Scholar 

  89. O'May, G. A., Reynolds, N. & Macfarlane, G. T. Effect of pH on an in vitro model of gastric microbiota in enteral nutrition patients. Appl. Environ. Microbiol. 71, 4777–4783 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  90. Kaleli, I., Cevahir, N., Demir, M., Yildirim, U. & Sahin, R. Anticandidal activity of Pseudomonas aeruginosa strains isolated from clinical specimens. Mycoses 50, 74–78 (2007).

    Article  PubMed  Google Scholar 

  91. Fidel, P. L. Jr, Cutright, J. L., Tait, L. & Sobel, J. D. A murine model of Candida glabrata vaginitis. J. Infect. Dis. 173, 425–431 (1996).

    Article  PubMed  Google Scholar 

  92. Sibley, C. D. et al. Discerning the complexity of community interactions using a Drosophila model of polymicrobial infections. PLoS Pathog. 4, e1000184 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ocana, V. S. & Nader-Macias, M. E. Vaginal lactobacilli: self- and co-aggregating ability. Br. J. Biomed. Sci. 59, 183–190 (2002).

    Article  PubMed  Google Scholar 

  94. Kerr, J. R. et al. Pseudomonas aeruginosa pyocyanin and 1-hydroxyphenazine inhibit fungal growth. J. Clin. Pathol. 52, 385–387 (1999).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  95. Brehm-Stecher, B. F. & Johnson, E. A. Sensitization of Staphylococcus aureus and Escherichia coli to antibiotics by the sesquiterpenoids nerolidol, farnesol, bisabolol, and apritone. Antimicrob. Agents Chemother. 47, 3357–3360 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 


Page 2

Critically ill patients in the intensive-care unit are good examples of the diversity of sites at which bacteria and fungi can interact and cause disease. The boxes describe the organisms that are most commonly found at each site.