Como faz raiz quadrara de numero elevados

If you're seeing this message, it means we're having trouble loading external resources on our website.

Se você está atrás de um filtro da Web, certifique-se que os domínios *.kastatic.org e *.kasandbox.org estão desbloqueados.

/pt/algebra/o-que-e-a-radiciacao/content/

Como encontrar a raiz de uma potência

Vamos ver como calcular a raiz quadrada e cúbica de uma potência? É mais fácil do que parece! Veja o vídeo para entender melhor.

Se você tem dúvidas sobre a radiciação, confira aqui como ela funciona.

Para encontrar a raiz de uma potência, você só tem que seguir os seguintes passos: 

1. Separe a base

Como faz raiz quadrara de numero elevados

2. Divida a expoente da potência pelo índice

Como faz raiz quadrara de numero elevados

3. Deixe o radicando elevado ao resultado da divisão entre o expoente e o índice.

Como faz raiz quadrara de numero elevados

Agora que você já conhece as bases da álgebra, que tal aprender a resolver expressões algebraicas

Continue aprendendo com a gente!

/pt/algebra/pratica/content/

A radiciação é uma operação matemática que possui várias aplicações, dominá-la é importante para resolver-se problemas envolvendo potenciação, já que essas operações são inversas.

Calcular a raiz enésima de um número x é encontrar qual número que, elevado a n, é igual a x. A radiciação possui propriedades importantes que servem para facilitar as contas e realizar simplificações de radicais. Para realizar operações com radiciação, é importante o domínio de cada uma das suas propriedades e compreender o significado de cada um dos seus termos.

Leia também: Como fazer a racionalização com raízes enésimas?

Como faz raiz quadrara de numero elevados
Radiciação é uma operação matemática sendo a inversa da potenciação.

Representação de uma radiciação

Para representar a raiz de um número, utilizamos um símbolo conhecido como radical (√ ), a raiz de um número qualquer é representada pela seguinte operação:

√ → radical

a→ radicando

b→ raiz

n→ índice

Observação: quando n = 2, chamamos de raiz quadrada, e, nesse caso, escrever o número 2 no índice torna-se opcional.

Para calcular-se a raiz de um número, é fundamental entender que a radiciação é a operação inversa da potenciação, então dominar potenciação é essencial para calcular-se a raiz de um número.

Ao escrever a raiz enésima de a e afirmar que ela é igual a b, ou seja:

estamos dizendo que, quando calculamos bn, encontramos o número representado pela letra a. Portanto é essencial entender que quando se fala que um número é raiz enésima de um outro número, isso significa que a raiz elevada ao índice é igual ao radicando.

Exemplos:

Veja também: Propriedades das potências – quais são e como as utilizar?

Propriedades da radiciação

As propriedades da radiciação são meios para facilitar-se o cálculo de problemas que envolvem tal operação. Existe um total de sete propriedades, e dominar cada uma delas é de grande importância para resolução de problemas sobre o tema.

A raiz enésima de um número a elevado a n é igual ao próprio número a, ou seja, calculando a raiz de um número cujo o índice da raiz é igual ao expoente do radicando, encontraremos como resposta o próprio radicando.

A raiz enésima do produto é igual ao produto de duas raízes enésimas. Se o radicando for o produto entre dois números, podemos separar como a multiplicação da raízes enésimas de cada uma de suas parcelas.

A raiz enésima de uma divisão é igual ao quociente entre duas raízes enésimas. Se o radicando for uma divisão entre dois números, podemos separar como a raiz enésima do dividendo, dividido pela raiz enésima do divisor.

Podemos multiplicar ou dividir (simplificar) o índice da raiz, desde que a mesma operação seja feita com o expoente do radicando.

Quando encontramos a raiz de uma raiz, podemos multiplicar seus índices e representar essa operação com um único radical.

A potência de uma raiz enésima pode ser reescrita como a raiz enésima do radicando elevada a essa potência.

A raiz enésima pode ser transformada em uma potência com expoente racional. O índice da raiz corresponde ao denominador, e o expoente da base corresponde ao numerador:

Acesse também: Como aplicar as propriedades da radiciação?

Simplificação de radicais

Quando estamos trabalhando com um valor que não possui uma raiz exata, podemos fazer a simplificação desse radical. Para isso, é necessário algum método para decompor o número em fatores primos.

Exemplo:

Escreva na forma simplificada a raiz quadrada de 360.

Vamos realizar a fatoração de 360 utilizando o método das divisões sucessivas.

360|2→ 2 é o menor número primo que divide 360; 180|2→ 2 é o menor número primo que divide 180;   90|2 → 2 é o menor número primo que divide 90;

  45|3 → 3 é o menor número primo que divide 45;


  15|3 → 3 é o menor número primo que divide 15;
    5|5 → 5 é o menor número primo que divide 5.
    1|

Sendo assim, temos que 360= 2 · 2 · 2 · 3 · 3 · 5.

Como o nosso objetivo é simplificar uma raiz quadrada, vamos agrupar esses fatores de 2 em 2, logo, podemos reescrever 360 como:

360= 2² · 2 · 3² · 5

Assim, podemos reescrever a raiz de 360, utilizaremos a primeira propriedade para simplificar a raiz quadrada, o que significa que os termos que estão elevados ao quadrado sairão do radical, e os que não estão permanecem dentro do radical:

Operações com radicais

A adição e a subtração de dois radicais são operações que, muitas vezes, são feitas de forma errada. Acontece que não podemos somar ou subtrair o radical de uma raiz com o radical de outra, ainda que o índice seja o mesmo:

√2 + √3 ≠ √5

Na busca por não cometer esse erro, o que deve ser feito é deixar representada a adição como no primeiro membro da equação. Vale lembrar que se trata de raízes. Realizar a soma ou a subtração de duas raízes e representá-las de forma mais simples só é possível se estivermos falando da mesma raiz, por exemplo:

√2 + √2 = 2√2

Nesse caso sempre somaremos os coeficientes, ou seja, o número que acompanha a raiz, lembrando que não se pode somar o radicando de cada uma delas.

Quando necessário, podemos simplificar as raízes para que elas tenham os mesmos radicandos, e aí sim realizar a operação:

√72 - √50

Sabemos que

72 = 2 · 2 · 2 · 3 · 3

72 = 2² · 2 · 3²

e também podemos reescrever o 40 como:

50 = 2 · 5 · 5

50 = 2 · 5²

Então teremos:

Para realizar a multiplicação, é necessário que o índice seja o mesmo para todas as raízes. Quando isso ocorre, acabamos recorrendo à 2ª e à 3ª propriedade. Somente nesses casos é possível realizar-se a operação.

Exemplo:

Exercícios resolvidos

Questão 1 - Sendo “a” e “b” números reais positivos e “n” e “m” números inteiros maiores do que 1, assinale a alternativa incorreta:

Resolução

Alternativa B.

Analisando-se as alternativas, a única que não corresponde a uma das propriedades da radiciação é a B, não podemos separar a soma da forma que foi feito.

a) → 2ª propriedade

b) → Não é uma propriedade da radiciação.

c) → 5ª propriedade

d) → 1ª propriedade

Questão 2 -  (IFG 2010) O resultado do cálculo da expressão é:

Resolução

Alternativa C.

Note que todas as frações possuem mesmo índice, o que permite que seja feita a multiplicação, então, primeiro, faremos a propriedade distributiva e, posteriormente, faremos as simplificações necessárias. Para facilitar, escreveremos 25 como 5².

A radiciação é a operação matemática inversa da potenciação, assim como a divisão é a operação inversa da multiplicação. Essa operação é representada pelo símbolo √, conhecido como radical, e a raiz de um número é representada por \(\sqrt[n]{a}\ =\ b\). Assim, podemos calcular a raiz enésima de um número utilizando o seguinte raciocínio: a raiz enésima de a é o número que elevado a n é igual a a. Além disso, a radiciação possui propriedades importantes que auxiliam na resolução de problemas envolvendo-a.  

Leia também: Potenciação e radiciação de frações

Videoaula sobre radiciação

Como representar a radiciação?

Para representar uma operação de radiciação, utilizamos o símbolo √, conhecido como radical. Então, a raiz de um número é representada por:

\(\sqrt[n]{a}\ =\ b\)

Essa sentença é lida como “raiz enésima de a é igual a b”. Cada um dos elementos recebe nome específico. São eles:

  • √: radical.

  • n: índice.

  • a: radicando.

  • b: raiz.

Observação: Quando o índice é igual a 2, não é necessário que o algarismo 2 conste. Ou seja:

\(\sqrt[2]{a}=\sqrt a\)

A radiciação e a potenciação são conhecidas como operações inversas. Assim, para calcular a radiciação, é fundamental saber resolver potenciações. Quando representamos a raiz enésima de a, encontramos como resposta o número b. Para que b seja raiz n de a, temos que:

\(\sqrt[n]{a}=b\rightarrow b^n=a\)

Logo, estamos procurando qual é o número b que elevado ao índice n é igual ao radicando a.

Exemplo 1:

\(\sqrt[2]{25}=5\rightarrow5^2=25\)

Exemplo 2:

\(\sqrt[3]{8}=2\rightarrow2^3=8\)

Exemplo 3:

\(\sqrt[5]{1024}=4\rightarrow4^5=1024\)

Propriedades da radiciação

As propriedades das operações matemáticas são ferramentas que auxiliam na resolução e na simplificação de problemas envolvendo uma operação, e com a radiciação não é diferente. É útil, portanto, dominar algumas propriedades da radiciação.

→ A raiz enésima de a elevado a n é igual ao próprio a

Se queremos calcular a raiz enésima de um número a elevado a n, ou seja, quando o expoente do número é igual ao índice da raiz, a raiz é o próprio número a.

\(\sqrt[n]{a^n}=a\)

→ A raiz do produto é igual ao produto das raízes

Quando o radicando é a multiplicação entre dois números, a raiz do produto é igual ao produto das raízes.

\(\sqrt[n]{a\cdot b}=\sqrt[n]{a}\cdot\sqrt[n]{b}\)

→ A raiz do quociente é igual ao quociente das raízes

Essa propriedade é equivalente à anterior, porém para o caso de divisão. Quando há uma divisão entre dois números no radicando, a raiz do quociente é igual ao quociente das raízes.

\(\sqrt[n]{a∶b}=\sqrt[n]{a}∶\sqrt[n]{b}\)

Além disso, essa propriedade é válida para frações, já que a fração é uma divisão.

\(\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}\)

→ Multiplicação e divisão do índice com o expoente

Podemos multiplicar ou dividir o radical e o expoente do radicando por um mesmo número.

\(\sqrt[n]{a^m}=\sqrt[n\cdot b]{a^{m\cdot b}}\)

\(\sqrt[n]{a^m}=\sqrt[n:b]{a^{m:b}}\)

→ Raiz de uma raiz

Para resolver a raiz de uma raiz, podemos multiplicar os índices dessas raízes.

\(\sqrt[n]{\sqrt[m]{a}}=\sqrt[n\cdot m]{a}\)

→ Potência de uma raiz

Quando há uma potenciação com a raiz, temos que:

\(\left(\sqrt[n]{a}\right)^b=\sqrt[n]{a^b}\)

→ Transformação de uma radiciação em uma potenciação

Podemos reescrever a radiciação de um número como uma potenciação.

\(\sqrt[n]{a^m}=a^\frac{m}{n}\)

Confira nossa videoaula: Propriedades de potência

Simplificação de radicais

Quando a raiz não é um número exato, é possível simplificar o radical, ou seja, escrever o radical da forma mais simples possível. Para fazer a simplificação, é necessário fatorar esse número e utilizar as propriedades da radiciação apresentadas anteriormente para representar a radiciação da forma mais simples possível.

Exemplo:

Simplifique \(\sqrt{392}\):

Resolução:

Primeiramente, é necessário realizar a fatoração de 392:

Como queremos calcular a raiz quadrada, agruparemos, quando possível, os números como potência de 2:

392 = \(2^2\cdot2\cdot7^2\)

Assim, temos que:

\(\sqrt{392}=\sqrt{2^2\cdot2\cdot7^2}\)

Utilizando as propriedades da radiciação, sabemos que a raiz do produto é igual ao produto das raízes:

\(\sqrt{392}=\sqrt{2^2}\cdot\sqrt2\cdot\sqrt{7^2}\)

Vale ressaltar que quando o índice não aparece, o seu valor é 2. E quando o índice e o expoente do radicando são os mesmos, a raiz é igual ao radicando. Ou seja:

\(\sqrt{392}=2\cdot\sqrt2\cdot7\)

Então, temos que:

\(\sqrt{392}=14\sqrt2\)

Logo, \(14\sqrt2\) é a forma simplificada da \(\sqrt{392}\).

Operações com radicais

→ Adição e subtração

Quando o radical é o mesmo, para somar ou subtrair a raiz, conservamos o radical e somamos os coeficientes.

Exemplo:

\(4\sqrt2+3\sqrt2=7\sqrt2\)

Quando o radical é diferente, não é possível realizar a operação. Dessa forma, é necessário obter um valor aproximado ou exato para a raiz antes de fazer o cálculo.

Exemplo:

\(5\sqrt3-2\sqrt2\)

\(5\cdot1,7-2\cdot1,4\)

\(8,5-2,8\)

\(5,7\)

→ Multiplicação e divisão

Quando o índice é o mesmo, podemos realizar a multiplicação ou a divisão e conservar o radical.

Exemplo:

\(\sqrt[3]{5}\cdot\sqrt[3]{2}=\sqrt[3]{2\cdot5}=\sqrt[3]{10}\)

Quando o índice é diferente, de início igualamos os índices e depois realizamos a multiplicação/divisão e conservamos o radical.

Exemplo:

\(\sqrt[3]{16}∶\sqrt[2]{2}\)

 Para igualar os índices, temos que:

\(\sqrt[3\cdot2]{{16}^2\ }:\sqrt[2\cdot3]{2^3}\)

\(\sqrt[6]{{16}^2∶2^3}\)

\(\sqrt[6]{256∶8}\)

\(\sqrt[6]{32}\)

Exercícios resolvidos sobre radiciação

Questão 1

(Fauel) O número \(\sqrt[3]{2160}\) pode ser escrito na forma simplificada. Assinale a alternativa que apresenta o número simplificado.

A) 50

B) \( 6\sqrt[3]{10}\)

C) \( 10\sqrt[3]{6}\)

D) 720

Resolução:

Alternativa B

Fazendo a fatoração:

Como queremos a raiz cúbica, agruparemos de 3 em 3:

2160 = \(2^3\cdot2\cdot3^3\cdot5\)

Logo:

\(\sqrt[3]{2160}=\sqrt[3]{2^3\cdot2\cdot3^3\cdot5}\)

\(\sqrt[3]{2160}=2\cdot3\sqrt[3]{2\cdot5}\)

\(\sqrt[3]{2160}=6\sqrt[3]{10}\)

Questão 2

Qual é a raiz cúbica de 4.096?

A) 26

B) 24

C) 16

D) 14

Resolução:

Alternativa C

Para encontrar a raiz cúbica de 4.096, devemos fatorar esse número:

Como nós queremos a raiz cúbica, agruparemos de 3 em 3. Assim, obtemos 4096 = \(2^3\cdot2^3\cdot2^3\cdot2^3\).

Portanto:

\(\sqrt[3]{4096}=\sqrt[3]{2^3\cdot2^3\cdot2^3\cdot2^3}\)

\(\sqrt[3]{4096}=2\cdot2\cdot2\cdot2\)

\(\sqrt[3]{4096}=16\)