Basal transcription factors recruit rna polymerase which combine together to form the ________.

  1. Sinden RE: Molecular interactions between Plasmodium and its vectors. Cell Microbiol. 2002, 4: 713-724. 10.1046/j.1462-5822.2002.00229.x.

    PubMed  CAS  Article  Google Scholar 

  2. Lanzer M, de Bruin D, Ravetch JV: A sequence element associated with the Plasmodium falciparum KAHRP gene is the site for developmentally regulated protein-DNA interactions. Nucleic Acids Res. 1992, 20: 3051-3056.

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  3. Lanzer M, de Bruin D, Ravetch JV: Transcriptional mapping of a 100 kb locus of Plasmodium falciparum identifies a region in which transcription terminates and reinitiates. EMBO J. 1992, 11: 1949-1955.

    PubMed  CAS  PubMed Central  Google Scholar 

  4. Waters AP: The ribosomal RNA genes of Plasmodium. Adv Parasitol. 1994, 34: 33-79.

    PubMed  CAS  Article  Google Scholar 

  5. Scherf A, Hernandez-Rivas R, Buffet P, Bottius E, Benatar C, Pouvelle B, Gysin J, Lanzer M: Antigenic variation in malaria : In situ switching, relaxed and mutually exclusive transcription of var genes during intra-erythrocytic development in Plasmodium falciparum. EMBO J. 1998, 17: 5418-5426. 10.1093/emboj/17.18.5418.

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  6. Dechering KJ, Kaan AM, Mbacham W, Wirth DF, Eling W, Konings RM, Stunnenberg HG: Isolation and functional characterization of two distinct sexual-stage-specific promoters of the human malaria parasite Plasmodium falciparum. Mol Cell Biol. 1999, 19: 967-978.

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  7. Hayward RE, DeRisi JL, Alfadhli S, Kaslow DC, Brown PO, Rathod PK: Shotgun DNA microarray and stage-specific gene expression in Plasmodium falciparum malaria. Mol Microbiol. 2000, 35: 6-14. 10.1046/j.1365-2958.2000.01730.x.

    PubMed  CAS  Article  Google Scholar 

  8. Mamoun C, Gluzman I, Hott C, MacMillan S, Amarakone A, Anderson D, Carlton J, Dame J, Chakrabarti D, Martin R, Brownstein B, Goldberg D: Co-ordinated programme of gene expression during asewual intraerythrocytic development of the human malaria parasite Plasmodium falciparum revealed by microaaay analysis. Mol Microbiol. 2001, 39: 26-36. 10.1046/j.1365-2958.2001.02222.x.

    PubMed  CAS  Article  Google Scholar 

  9. Le Roch KG, Zhou Y, Blair PL, Grainger M, Moch K, Haynes D, De la Vega P, Holder A, Batalov S, Carucci DJ, Winzeler EA: Discovery of gene function by expression profiling of the malaria parasite life cycle. Science. 2003, 301: 1503-1508. 10.1126/science.1087025.

    PubMed  CAS  Article  Google Scholar 

  10. Bozdech Z, Llinas M, Pulliam B, Wong E, Zhu J, DeRisi JL: The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biol. 2003, 1: E5-10.1371/journal.pbio.0000005.

    PubMed  PubMed Central  Article  Google Scholar 

  11. Florens L, Washburn M, Raine D, Anthony R, Graiger M, Haynes D, Moch J, Muster N, Sacii J, Tabb D, Witner A, Wolters D, Wu Y, Garder M, Holder A, Sinden R, Yates J, Carucci D: A proteomic view of the Plasmodium falciparum life cycle. Nature. 2002, 419: 520-526. 10.1038/nature01107.

    PubMed  CAS  Article  Google Scholar 

  12. Lasonder E, Ishihama Y, Andersen JS, Vermunt AMW, Pain A, Sauerwein RW, Eling WMC, Hall N, Waters A, Stunnenberg HG, Mann M: Analysis of the Plasmodium falciparum proteome by high-accuracy mass spectrometry. Nature. 2002, 419: 537-542. 10.1038/nature01111.

    PubMed  CAS  Article  Google Scholar 

  13. Lanzer M, Wertheimer S, De Bruin D, Ravetch JV: Plasmodium: control of gene expression in malaria parasites. J Exp Parasitol. 1993, 77: 121-128. 10.1006/expr.1993.1068.

    CAS  Article  Google Scholar 

  14. Horrocks P, Dechering K, Lanzer M: Control of gene expression in Plasmodium falciparum. Mol Biochem Parasitol. 1998, 95: 171-181. 10.1016/S0166-6851(98)00110-8.

    PubMed  CAS  Article  Google Scholar 

  15. Hahn S: Structure and mechanism of the RNA polymerase II transcription machinery. Nat Struct Biol Mol Biol. 2004, 11: 394-402. 10.1038/nsmb763.

    CAS  Article  Google Scholar 

  16. Veenstra GJC, Wolffe AP: Gene-selective developmental roles of general transcription factors. Trends Biochem Sci. 2001, 25: 665-671. 10.1016/S0968-0004(01)01970-3.

    Article  Google Scholar 

  17. McAndrew MB, Read M, Sims PF, Hyde JE: Characterization of the gene encoding an unusually divergent TATA-binding protein (TBP) from the extremely A+T-rich human malaria parasite Plasmodium falciparum. Gene. 1993, 124: 165-171. 10.1016/0378-1119(93)90390-O.

    PubMed  CAS  Article  Google Scholar 

  18. Hirtzlin J, Farber PM, Franklin RM: Isolation of a novel Plasmodium falciparum gene encoding a protein homologous to the Tat-binding protein family. Eur J Biochem. 1994, 226: 673-680. 10.1111/j.1432-1033.1994.tb20095.x.

    PubMed  CAS  Article  Google Scholar 

  19. Fox BA, Li WB, Tanaka M, Inselburg J, Bzik DJ: Molecular characterization of the largest subunit of Plasmodium falciparum RNA polymerase I. Mol Biochem Parasitol. 1993, 61: 37-38. 10.1016/0166-6851(93)90156-R.

    PubMed  CAS  Article  Google Scholar 

  20. Li WB, Bzik DJ, Gu HM, Tanaka M, Fox BA, Inselburg J: An enlarged largest subunit of Plasmodium falciparum RNA polymerase II defines conserved and variable RNA polymerase domains. Nucleic Acids Res. 1989, 17: 9621-9636.

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  21. Li WB, Bzik DJ, Tanaka M, Gu HM, Fox BA, Inselburg J: Characterization of the gene encoding the largest subunit of Plasmodium falciparum RNA polymerase III. Mol Biochem Parasitol. 1991, 46: 229-239. 10.1016/0166-6851(91)90047-A.

    PubMed  CAS  Article  Google Scholar 

  22. Aravind L, Iyer LM, Wellems TE, Miller LH: Plasmodium biology: genomic gleanings. Cell. 2003, 115: 771-785. 10.1016/S0092-8674(03)01023-7.

    PubMed  CAS  Article  Google Scholar 

  23. Coulson RM, Hall N, Ouzounis CA: Comparative genomics of transcriptional control in the human malaria parasite Plasmodium falciparum. Genome Res. 2004, 14: 1548-1554. 10.1101/gr.2218604.

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  24. Gardner MJ, Shallom SJ, Carlton JM, Salzberg SL, Nene V, Shoaibi A, Ciecko A, Lynn J, Rizzo M, Weaver B, Jarrahi B, Brenner M, Parvizi B, Tallon L, Moazzez A, Granger D, Fujii C, Hansen C, Pederson J, Feldblyum T, Peterson J, Suh B, Angiuoli S, Pertea M, Allen J, Selengut J, White O, Cummings LM, Smith HO, Adams MD, Venter JC, Carucci DJ, Hoffman SL, Fraser CM: Genome sequence of the human malaria parasite Plasmodium falciparum. Nature. 2002, 419: 498-511. 10.1038/nature01097.

    PubMed  CAS  Article  Google Scholar 

  25. Bahl A, Brunk B, Crabtree J, Fraunholz MJ, Gajria B, Grant GR, Ginsburg H, Gupta D, Kissinger JC, Labo P, Li L, Mailman MD, Milgram AJ, Pearson DS, Roos DS, Schug J, Stoeckert CJ, Whetzel P: PlasmoDB: the Plasmodium genome resource. A database integrating experimental and computational data. Nucleic Acids Res. 2003, 31: 212-215. 10.1093/nar/gkg081.

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  26. McConkey GA, Pinney JW, Westhead DR, Plueckhahn K, Fitzpatrick TB, Macheroux P, Kappes B: Annotating the Plasmodium genome and the enigma of the shikimate pathway. Trends Parasitol. 2004, 20: 60-65. 10.1016/j.pt.2003.11.001.

    PubMed  CAS  Article  Google Scholar 

  27. Pizzi E, Frontali C: Low-complexity regions in Plasmodium falciparum proteins. Genome Res. 2001, 11: 218-229. 10.1101/gr.GR-1522R.

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  28. Chothia C, Lesk AM: The relation between the divergence of sequence and structure in proteins. EMBO J. 1986, 5: 823-826.

    PubMed  CAS  PubMed Central  Google Scholar 

  29. Gaboriaud C, Bissery V, Benchetrit T, Mornon JP: Hydrophobic cluster analysis: an efficient new way to compare and analyse amino acid sequences. FEBS Lett. 1987, 224 (1): 149-155. 10.1016/0014-5793(87)80439-8.

    PubMed  CAS  Article  Google Scholar 

  30. Callebaut I, Labesse G, Durand P, Poupon A, Canard L, Chomilier J, Henrissat B, Mornon JP: Deciphering protein sequence information through hydrophobic cluster analysis (HCA):current status and perspectives. Cell Mol Life Sci. 1997, 53: 621-645. 10.1007/s000180050082.

    PubMed  CAS  Article  Google Scholar 

  31. Woodcock S, Mornon JP, Henrissat B: Detection of secondary structure elements in proteins by hydrophobic cluster analysis. Protein Eng. 1992, 5: 629-635.

    PubMed  CAS  Article  Google Scholar 

  32. Hennetin J, Le Tuan K, Canard L, Colloc'h N, Mornon JP, Callebaut I: Non-intertwined binary patterns of hydrophobic/nonhydrophobic amino acids are considerably better markers of regular secondary structures than nonconstrained patterns. Proteins. 2003, 51: 236-244. 10.1002/prot.10355.

    PubMed  CAS  Article  Google Scholar 

  33. Soutoglou E, Demeny MA, Scheer E, Fienga G, Sassone-Corsi P, Tora L: The nuclear import of TAF10 is regulated by one of its three histone fold domain-containing interaction partners. Mol Cell Biol. 2005, 25: 4092-4104. 10.1128/MCB.25.10.4092-4104.2005.

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  34. Geiger JH, Hahn S, Lee S, Sigler PB: Crystal structure of the yeast TFIIA/TBP/DNA complex. Science. 1996, 272: 830-836.

    PubMed  CAS  Article  Google Scholar 

  35. Tan S, Hunziker Y, Sargent DF, Richmond TJ: Crystal structure of a yeast TFIIA/TBP/DNA complex. Nature. 1996, 381: 127-151. 10.1038/381127a0.

    PubMed  CAS  Article  Google Scholar 

  36. Bleichenbacher M, Tan S, Richmond TJ: Novel interactions between the components of human and yeast TFIIA/TBP/DNA complexes. J Mol Biol. 2003, 332: 783-793. 10.1016/S0022-2836(03)00887-8.

    PubMed  CAS  Article  Google Scholar 

  37. Upadhyaya AB, Lee SH, De Jong J: Identification of a general transcription factor TFIIAa/b homolog selectively expressed in testis. J Biol Chem. 1999, 274: 18040-18048. 10.1074/jbc.274.25.18040.

    PubMed  CAS  Article  Google Scholar 

  38. Gasch A, Hoffmann A, Horikoshi M, Roeder RG, Chua NH: Arabidopsis thaliana contains two genes for TFIID. Nature. 1990, 346: 390-394. 10.1038/346390a0.

    PubMed  CAS  Article  Google Scholar 

  39. Crowley TE, Hoey T, Liu JK, Jan YN, Jan LY, Tjian R: A new factor related to TATA-binding protein has highly restricted expression patterns in Drosophila. Nature. 1993, 361: 557-561. 10.1038/361557a0.

    PubMed  CAS  Article  Google Scholar 

  40. Wieczorek E, Brand M, Jacq X, Tora L: Function of TAF(II)-containing complex without TBP in transcription by RNA polymerase II. Nature. 1998, 393: 187-191. 10.1038/30283.

    PubMed  CAS  Article  Google Scholar 

  41. Chen B-S, Hampsey M: Transcription activation: unveiling the essential nature of TFIID. Current Biol. 2002, 12: R620-R622. 10.1016/S0960-9822(02)01134-X.

    CAS  Article  Google Scholar 

  42. Gangloff Y-G, Romier C, Thuault S, Werten S, Davidson I: The histone fold is a key structural motif of transcription factor TFIID. Trends Biochem Sci. 2001, 26: 250-257. 10.1016/S0968-0004(00)01741-2.

    PubMed  CAS  Article  Google Scholar 

  43. Carlton JM, Angiuoli SV, Suh BB, Kooij TW, Pertea M, Silva JC, Ermolaeva MD, Allen JE, Selengut JD, Koo HL, Peterson JD, Pop M, Kosack DS, Shumway MF, Bidwell SL, Shallom SJ, van Aken SE, Riedmuller SB, Feldblyum TV, Cho JK, Quackenbush J, Sedegah M, Shoaibi A, Cummings LM, Florens L, Yates JR, Raine JD, Sinden RE, Harris MA, Cunningham DA, Preiser PR, Bergman LW, Vaidya AB, van Lin LH, Janse CJ, Waters AP, Smith HO, White OR, Salzberg SL, Venter JC, Fraser CM, Hoffman SL, Gardner MJ, Carucci DJ: Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelii. Nature. 2002, 419: 512-519. 10.1038/nature01099.

    PubMed  CAS  Article  Google Scholar 

  44. Abrahamsen MS, Templeton TJ, Enomoto S, Abrahante JE, Zhu G, Lancto CA, Deng M, Liu C, Widmer G, Tzipori S, Buck GA, Xu P, Bankier AT, Dear PH, Konfortov BA, Spriggs HF, Iyer L, Anantharaman V, Aravind L, Kapur V: Complete genome sequence of the apicomplexan, Cryptosporidium parvum. Science. 2004, 304: 441-445. 10.1126/science.1094786.

    PubMed  CAS  Article  Google Scholar 

  45. Mizzen CA, Yang XJ, Kokubo T, Brownell JE, Bannister AJ, Owen-Hughes T, Workman J, Wang L, Berger SL, Kouzarides T, Nakatani Y, Allis CD: The TAF(II)250 subunit of TFIID has histone acetyltransferase activity. Cell. 1996, 87: 1261-1270. 10.1016/S0092-8674(00)81821-8.

    PubMed  CAS  Article  Google Scholar 

  46. Matangkasombut O, Buratowski RM, Swilling NW, Buratowski S: Bromodomain factor 1 corresponds to a missing piece of yeast TFIID. Genes Dev. 2000, 14: 951-962.

    PubMed  CAS  PubMed Central  Google Scholar 

  47. Sullivan AS, Aravind L, Makalowska I, Baxevanis AD, Landsman D: The Histone Database: a comprehensive WWW resource for histones and histone fold-containing proteins. Nucleic Acids Res. 2000, 28: 320-322. 10.1093/nar/28.1.320. [http://research.nhgri.nih.gov/histones]

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  48. Hoffmann A, Chiang CM, Oelgeschlager T, Xie X, Burley SK, Nakatani Y, Roeder RG: A histone octamer-like structure within TFIID. Nature. 1996, 380: 356-9. 10.1038/380356a0.

    PubMed  CAS  Article  Google Scholar 

  49. Albright SR, Tjian R: TAFs revisited: more data reveal new twists and confirm old ideas. Genes. 2000, 242: 1-13.

    CAS  Google Scholar 

  50. Gangloff YG, Sanders SL, Romier C, Kirschner D, Weil PA, Tora L, Davidson I: Histone folds mediate selective heterodimerization of yeast TAF(II)25 with TFIID components yTAF(II)47 and yTAF(II)65 and with SAGA component ySPT7. Mol Cell Biol. 2001, 21: 1841-1853.

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  51. Selleck W, Howley R, Fang Q, Podolny V, Fried MG, Buratowski S, Tan S: A histone fold TAF octamer within the yeast TFIID transcriptional coactivator. Nat Struct Biol. 2001, 8: 695-700. 10.1038/90408.

    PubMed  CAS  Article  Google Scholar 

  52. Luger K, Richmond TJ: The histone tails of the nucleosome. Curr Opin Genet Dev. 1998, 8: 140-146. 10.1016/S0959-437X(98)80134-2.

    PubMed  CAS  Article  Google Scholar 

  53. Werten S, Mitschler A, Romier C, Gangloff YG, Thuault S, Davidson I, Moras D: Crystal structure of a subcomplex of human transcription factor TFIID formed by TATA binding protein-associated factors hTAF4 (hTAF(II)135) and hTAF12 (hTAF(II)20). J Biol Chem. 2002, 277: 45502-45509. 10.1074/jbc.M206587200.

    PubMed  CAS  Article  Google Scholar 

  54. Leurent C, Sanders S, Ruhlmann C, Mallouh V, Weil PA, Kirschner DB, Tora L, Schultz P: Mapping histone fold TAFs within yeast TFIID. EMBO J. 2002, 21: 3424-3433. 10.1093/emboj/cdf342.

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  55. Leurent C, Sanders SL, Demeny MA, Garbett KA, Ruhlmann C, Weil PA, Tora L, Schultz P: Mapping key functional sites within yeast TFIID. EMBO J. 2004, 23: 719-727. 10.1038/sj.emboj.7600111.

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  56. Sanders SL, Klebanow ER, Weil PA: TAF25p, a non-histone-like subunit of TFIID and SAGA complexes, is essential for total mRNA gene transcription in vivo. J Biol Chem. 1999, 274: 18847-18850. 10.1074/jbc.274.27.18847.

    PubMed  CAS  Article  Google Scholar 

  57. Le Masson I, Yu DY, Jensen K, Chevalier A, Courbeyrette R, Boulard Y, Smith MM, Mann C: Yaf9, a novel NuA4 histone acetyltransferase subunit, is required for the cellular response to spindle stress in yeast. Mol Cell Biol. 2003, 23: 6086-6102. 10.1128/MCB.23.17.6086-6102.2003.

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  58. Ohkuma Y, Sumimoto H, Hoffmann A, Shimasaki S, Horikoshi M, Roeder RG: Structural motifs and potential sigma homologies in the large subunit of human general transcription factor TFIIE. Nature. 1991, 354: 398-401. 10.1038/354398a0.

    PubMed  CAS  Article  Google Scholar 

  59. Feaver WJ, Henry NL, Bushnell DA, Sayre MH, Brickner JH, Gileadi O, Kornberg RD: Yeast TFIIE. Cloning, expression, and homology to vertebrate proteins. J Biol Chem. 1994, 269: 27549-27553.

    PubMed  CAS  Google Scholar 

  60. Maxon ME, Goodrich JA, Tjian R: Transcription factor IIE binds preferentially to RNA polymerase IIa and recruits TFIIH: a model for promoter clearance. Genes Dev. 1994, 8: 515-524.

    PubMed  CAS  Article  Google Scholar 

  61. Ohkuma Y, Hashimoto S, Wang CK, Horikoshi M, Roeder RG: Analysis of the role of TFIIE in basal transcription and TFIIH-mediated carboxy-terminal domain phosphorylation through structure-function studies of TFIIE-alpha. Mol Cell Biol. 1995, 15: 4856-4866.

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  62. Meinhart A, Blobel J, Cramer P: An extended winged helix domain in general transcription factor E/IIE alpha. J Biol Chem. 2003, 278: 48267-48274. 10.1074/jbc.M307874200.

    PubMed  CAS  Article  Google Scholar 

  63. Okuda M, Tanaka A, Arai Y, Satoh M, Okamura H, Nagadoi A, Hanaoka F, Ohkuma Y, Nishimura Y: A novel zinc finger structure in the large subunit of human general transcription factor TFIIE. J Biol Chem. 2004, 279: 51395-51403. 10.1074/jbc.M404722200.

    PubMed  CAS  Article  Google Scholar 

  64. Kelley LA, MacCallum RM, Sternberg MJ: Enhanced genome annotation using structural profiles in the program 3D-PSSM. J Mol Biol. 2000, 299: 499-520. 10.1006/jmbi.2000.3741.

    PubMed  CAS  Article  Google Scholar 

  65. Kuldell NH, Buratowski S: Genetic analysis of the large subunit of yeast transcription factor IIE reveals two regions with distinct functions. Mol Cell Biol. 1997, 17: 5288-5298.

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  66. Flores O, Ha I, Reinberg D: Factors involved in specific transcription by mammalian RNA polymerase II. Purification and subunit composition of transcription factor IIF. J Biol Chem. 1990, 265: 5629-5634.

    PubMed  CAS  Google Scholar 

  67. Woychik NA, Hampsey M: The RNA polymerase II machinery: structure illuminates function. Cell. 2002, 108: 453-463. 10.1016/S0092-8674(02)00646-3.

    PubMed  CAS  Article  Google Scholar 

  68. Fang SM, Burton ZF: RNA polymerase II-associated protein (RAP) 74 binds transcription factor (TF) IIB and blocks TFIIB-RAP30 binding. J Biol Chem. 1996, 271: 11703-11709. 10.1074/jbc.271.20.11703.

    PubMed  CAS  Article  Google Scholar 

  69. Groft CM, Uljon SN, Wang R, Werner MH: Structural homology between the Rap30 DNA-binding domain and linker histone H5: implications for preinitiation complex assembly. Proc Natl Acad Sci U S A. 1998, 95: 9117-9122. 10.1073/pnas.95.16.9117.

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  70. Gaiser F, Tan S, Richmond TJ: Novel dimerization fold of RAP30/RAP74 in human TFIIF at 1.7 Å resolution. J Mol Biol. 2000, 302: 1119-1127. 10.1006/jmbi.2000.4110.

    PubMed  CAS  Article  Google Scholar 

  71. Tan S, Garrett KP, Conaway RC, Conaway JW: Cryptic DNA-binding domain in the C terminus of RNA polymerase II general transcription factor RAP30. Proc Natl Acad Sci U S A. 1994, 91: 9808-9812.

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  72. Kamada K, De Angelis J, Roeder RG, Burley SK: Crystal structure of the C-terminal domain of the RAP74 subunit of human transcription factor IIF. Proc Natl Acad Sci U S A. 2001, 98: 3115-3120. 10.1073/pnas.051631098.

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  73. Schultz P, Fribourg S, Poterszman A, Mallouh V, Moras D, Egly JM: Molecular structure of TFIIH. Cell. 2000, 102: 599-607. 10.1016/S0092-8674(00)00082-9.

    PubMed  CAS  Article  Google Scholar 

  74. Chang WH, Kornberg RD: Electron crystal structure of the transcription factor and DNA repair complex, core TFIIH. Cell. 2000, 102: 609-613. 10.1016/S0092-8674(00)00083-0.

    PubMed  CAS  Article  Google Scholar 

  75. Zurita M, Merino C: The transcriptional complexity of the TFIIH complex. Trends Genet. 2003, 19: 578-584. 10.1016/j.tig.2003.08.005.

    PubMed  CAS  Article  Google Scholar 

  76. Ranish JA, Hahn S, Lu Y, Yi EC, Li XJ, Eng J, Aebersold R: Identification of TFB5, a new component of general transcription and DNA repair factor IIH. Nat Genet. 2004, 36: 707-713. 10.1038/ng1385.

    PubMed  CAS  Article  Google Scholar 

  77. Giglia-Mari G, Coin F, Ranish JA, Hoogstraten D, Theil A, Wijgers N, Jaspers NG, Raams A, Argentini M, van der Spek PJ, Botta E, Stefanini M, Egly JM, Aebersold R, Hoeijmakers JH, Vermeulen W: A new, tenth subunit of TFIIH is responsible for the DNA repair syndrome trichothiodystrophy group A. Nat Genet. 2004, 36: 714-719. 10.1038/ng1387.

    PubMed  CAS  Article  Google Scholar 

  78. Edwards MC, Wong C, Elledge SJ: Human cyclin K, a novel RNA polymerase II-associated cyclin possessing both carboxy-terminal domain kinase and Cdk-activating kinase activity. Mol Cell Biol. 1998, 18: 4291-4300.

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  79. Doerks T, Huber S, Buchner E, Bork P: BSD: a novel domain in transcription factors and synapse-associated proteins. Trends Biochem Sci. 2002, 27: 168-170. 10.1016/S0968-0004(01)02042-4.

    PubMed  CAS  Article  Google Scholar 

  80. Gervais V, Lamour V, Jawhari A, Frindel F, Wasielewski E, Dubaele S, Egly JM, Thierry JC, Kieffer B, Poterszman A: TFIIH contains a PH domain involved in DNA nucleotide excision repair. Nat Struct Mol Biol. 2004, 11: 616-622. 10.1038/nsmb782.

    PubMed  CAS  Article  Google Scholar 

  81. Coulson RM, Ouzounis CA: The phylogenic diversity of eukaryotic transcription. Nucleic Acids Res. 2003, 31: 653-660. 10.1093/nar/gkg156.

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  82. Bastien O, Lespinats S, Roy S, Metayer K, Fertil B, Codani JJ, Marechal E: Analysis of the compositional biases in Plasmodium falciparum genome and proteome using Arabidopsis thaliana as a reference. Gene. 2004, 336: 163-173. 10.1016/j.gene.2004.04.029.

    PubMed  CAS  Article  Google Scholar 

  83. Soyer A, Chomilier J, Mornon JP, Jullien R, Sadoc JF: Voronoi tessellation reveals the condensed matter character of folded proteins. Phys Rev Lett. 2000, 85: 3532-3535. 10.1103/PhysRevLett.85.3532.

    PubMed  CAS  Article  Google Scholar 

  84. Pintar A, Carugo O, Pongor S: Atom depth in protein structure and function. Trends Biochem Sci. 2003, 28: 593-597. 10.1016/j.tibs.2003.09.004.

    PubMed  CAS  Article  Google Scholar 

  85. Pintar A, Carugo O, Pongor S: Atom depth as a descriptor of the protein interior. Biophys J. 2003, 84: 2553-2561.

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  86. Andel F, Ladurner AG, Inouye C, Tjian R, Nogales E: Three-dimensional structure of the human TFIID-IIA-IIB complex. Science. 1999, 286: 2153-2156. 10.1126/science.286.5447.2153.

    PubMed  CAS  Article  Google Scholar 

  87. Brand M, Leurent C, Mallouh V, Tora L, Schultz P: Three-dimensional structures of TAFII-containing complexes TFIID and TFTC. Science. 1999, 286: 2151-2153. 10.1126/science.286.5447.2151.

    PubMed  CAS  Article  Google Scholar 

  88. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped-BLAST and PSI-BLAST : a new generation of protein database search programs. Nucl Acids Res. 1997, 25: 3389-3402. 10.1093/nar/25.17.3389.

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  89. Kissinger JC, Brunk BP, Crabtree J, Fraunholz MJ, Gajria B, Milgram AJ, Pearson DS, Schug J, Bahl A, Diskin S, Ginsburg H, Grant GR, Gupta D, Labo P, Li L, Mailman MD, McWeeney SK, Whetzel P, Stoeckert CJ, Roos DS: The Plasmodium genome database. Nature. 2002, 419: 490-492. 10.1038/419490a. [http://www.plasmodb.org]

    PubMed  CAS  Article  Google Scholar 

  90. Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S, Khanna A, Marshall M, Moxon S, Sonnhammer EL, Studholme DJ, Yeats C, Eddy SR: The Pfam protein families database. Nucleic Acids Res. 2004, 32: D138-141. 10.1093/nar/gkh121.

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  91. Letunic I, Copley RR, Schmidt S, Ciccarelli FD, Doerks T, Schultz J, Ponting CP, Bork P: SMART 4.0: towards genomic data integration. Nucleic Acids Res. 2004, 32: D142-144. 10.1093/nar/gkh088.

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  92. Marchler-Bauer A, Anderson JB, Cherukuri PF, DeWeese-Scott C, Geer LY, Gwadz M, He S, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Liebert CA, Liu C, Lu F, Marchler GH, Mullokandov M, Shoemaker BA, Simonyan V, Song JS, Thiessen PA, Yamashita RA, Yin JJ, Zhang D, Bryant SH: CDD: a Conserved Domain Database for protein classification. Nucleic Acids Res. 2005, 33: D192-D196. 10.1093/nar/gki069.

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  93. Callebaut I, Mornon JP: From BRCA1 to RAP1 : a widespread BRCT module closely associated with DNA repair. FEBS Letters. 1997, 400: 25-30. 10.1016/S0014-5793(96)01312-9.

    PubMed  CAS  Article  Google Scholar 

  94. Callebaut I, Mornon JP: OCRE: a novel domain made of imperfect, aromatic-rich octamer repeats. Bioinformatics. 2005, 21: 699-702. 10.1093/bioinformatics/bti065.

    PubMed  CAS  Article  Google Scholar 

  95. Callebaut I, Mornon JP: The V(D)J recombination activating protein RAG2 consists of a six-bladed propeller and a PHD fingerlike domain, as revealed by sequence analysis. Cell Mol Life Sci. 1998, 54: 880-891. 10.1007/s000180050216.

    PubMed  CAS  Article  Google Scholar 

  96. Girault JA, Labesse G, Mornon JP, Callebaut I: The N- termini of FAK and JAKs contains divergent band 4.1 domains. Trends Biochem Sci. 1999, 24: 54-57. 10.1016/S0968-0004(98)01331-0.

    PubMed  CAS  Article  Google Scholar 

  97. Henrissat B, Callebaut I, Fabrega S, Lehn P, Mornon JP, Davies G: Conserved catalytic machinery and the prediction of a common fold for several families of glycoside hydrolases. Proc Natl Acad Sci USA. 1995, 92: 7090-7094.

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  98. Callebaut I, Moshous D, Mornon JP, de Villartay JP: Metallo-beta-lactamase fold within nucleic acids processing enzymes: the beta-CASP family. Nucleic Acids Res. 2002, 30: 3592-3601. 10.1093/nar/gkf470.

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  99. Callebaut I, Curcio-Morelli C, Mornon JP, Gereben B, Buettner C, Huang S, Castro B, Fonseca TL, Harney JW, Larsen PR, Bianco AC: The iodothyronine selenodeiodinases are thioredoxin-fold family proteins containing a glycoside hydrolase-clan GH-A-like structure. J Biol Chem. 2003, 276: 36887-36896. 10.1074/jbc.M305725200.

    Article  Google Scholar 

  100. [http://www.lmcp.jussieu.fr/~mornon/publications.html]

  101. Guermah M, Ge K, Chiang CM, Roeder RG: The TBN protein, which is essential for early embryonic mouse development, is an inducible TAFII implicated in adipogenesis. Mol Cell. 2003, 12: 991-1001. 10.1016/S1097-2765(03)00396-4.

    PubMed  CAS  Article  Google Scholar 

  102. [http://psort.nibb.ac.jp]

  103. [http://www.cbs.dtu.dk/services/NetNES]


Page 2

Factors H. sapiens S. cerevisiae P. falciparum Nuclear signals prediction Expression pattern
     NLS NES Micro-array Proteomic data
TFIIA α P52655 P32773 (TOA1) MAL7P1.78 + - - G -
TFIIA β        
TFIIA γ P52657 P32774 (TOA2) PFL2435w *+ - - T,Sc -
    PFI1630 * + - G -
TFIIB Q00403 P29055 PFA0525w - - All stages -
TFIID TBP P20226 P13393 PFE0305w - - R -
TFIID TAF1 P21675 (TAF250) P46677 (TAF145) PFL1645w + - S,LT S,G
TFIID TAF2 gi:4507347 (TAF150) P23255 (TAF150) MAL7P1.134 + + R,T S
TFIID TAF5 Q15542 (TAF100) P38129 (TAF90) ?     
TFIID TAF7 Q15545 (TAF55) Q05021 (TAF67) PFI1425w + + R,S -
TFIID TAF14 P42568 (ENL/AF-9) P35189 (TAF30) ?     
TFIID TAF4 O00268 (TAF135) P50105 (TAF48) ?     
TFIID TAF12 Q16514 (TAF20) Q03761 (TAF68/61) ?     
TFIID TAF6 P49848 (TAF80) P53040 (TAF60) ?     
TFIID TAF9 Q16594 (TAF31) Q05027 (TAF17) ?     
TFIID TAF11 Q15544 (TAF28) Q04226 (TAF40) ?     
TFIID TAF13 Q15543 (TAF18) P11747 (TAF19) ?     
TFIID TAF3 gi:13374079 (TAF140) Q12297 (TAF47) ?     
TFIID TAF8 gi:31323620 (TAF43) Q03750 (TAF65) ?     
TFIID TAF10 Q12962 (TAF30) Q12030 (TAF25) PFE1110w - + R, Sc -
TFIIE α P29083 P36100 MAL7P1.86 + + + Sc -
TFIIE β P29084 P36145 MAL13P1.360 * + - ND -
TFIIF α P35269 (RAP74) P41895 (Tfg1) ?     
TFIIF β P13984 (RAP30) P41896(Tfg2) PF11_0458 * - + R,G -
TFIIH core p62/TFB1 P32780 (p62) P32776 (TFB1) MAL3P7.42 *+ (Chr3.phat_258) + + R,T -
TFIIH core p52/TFB2 Q92759 (p52) gi:6325135 (TFB2) PFL2125c + + R,T,Sc -
TFIIH core p44/SSL1 Q13888 (p44) Q04673 (SSL1) MAL13P1.76 + + R,T -
TFIIH core p34/TFB4 Q13889 (p34) Gi:6325313 PF13_0279 - + T -
TFIIH core TFB5 Gi:55665883 Gi:13129164 PF14_0398 - - R, T, G -
TFIIH core XPB/SSL2-RAD25 P19447 (XPB) Q00578 (SSL2/RAD25) PF10_0369 + - G S
TFIIH XPD/RAD3 P18074 (XPD) P06839 (RAD3) PFI1650w + + R,T,G G
TFIIH CAK MAT1/TFB3 P51948 (MAT1) Gi:6320668 (TFB3) PFE0610c + - R,T -
TFIIH CAK Cdk7/KIN28 P50613 (CDK7) P06242 (KIN28) ? $     
TFIIH CAK Cyclin H/CCL1 P51946 (cyclin H) P37366 (CCL1) ? $     

  1. The general transcription factors which were identified in this report are underlined and shown in bold; * and + indicate similarities which were identified in this report after assessing PSI-BLAST marginal similarities at the sequence 2D level or after extending the comparison at the 2D level outside the limits primarily defined by PSI-BLAST, respectively. The Swiss-Prot accession numbers are given for the human and yeast sequences. When a Swiss-Prot identifier is not available, the genbank identifier (gi) is indicated in italics instead. The references of the human TAF3 and TAF8 sequences can be found in [50] and [100], respectively. $ : see text for comments on these putative homologues of Cdk7/KIN28 and cyclin H/CCL1. The presence of nuclear localization sequences (NLS 102), nuclear export sequences (NES [103]), and the expression of these predicted general transcription factors using microarray and proteomics on different parasite stages ([9–11, 89]) are indicated. G: gametocyte, T: trophozoite, LT: late trophozoite, Sc: schizonte, R: ring, (-): absent, (+): present, (?): cannot be found.